Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning...Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning electron microscopy, electron back-scattered diffraction, transmission electron microscopy, X-ray diffraction and tensile test. It was found that the microstructure of the high manganese steel was refined by the Nb addition. Moreover, steel with Nb addition has a higher stacking fault energy which favors the deformation twinning, Twin ning is the most important deformation mechanism in the Nb-bearing steel. Therefore, steel with Nb addition has much higher strength and higher plasticity. The product of tensile strength and total elongation exceeds 61.8 GPa ·%. In addition, steel with Nb addition also has excellent non magnetic property.展开更多
As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is...As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.展开更多
High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to...High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to 0.86 wt.%) on the pitting corrosion behavior of the experimental non-magnetic drill collar steel were investigated using the electrochemical tests and immersion tests. Besides, X-ray photoelectron spectroscopy was used to analyze the constitution of the passive film. The results show that with the enhancement of N content from 0.63 to 0.86 wt.%, the metastable pitting corrosion sensitivity of the tested materials in 3.5 wt.% NaCl solution decreased and the pitting corrosion resistance increased. Meanwhile, the corrosion rate in 6 wt.% FeCl3 solution at 30 ℃ decreased from 10.40 to 4.93 mm/a. On the other hand, nitrogen was concentrated in the form of ammonia (NH4+ and NH3)on the outermost surface of the passive films. The contents of Cr2O3 and Fe2O3 raised in the passive films, together with the content of CrN, at metal/film interface increased as N content increased from 0.63 to 0.86 wt.%, which facilitated protective ability of the passive films, thus contributing to higher pitting corrosion resistance.展开更多
The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the ma...The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanopartieles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.展开更多
In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured su...In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured substrates(RABi TS) method).Both the rolling and the recrystallization texture in the alloy tapes were investigated by X-ray diffraction and electron back-scatter diffraction,respectively.The results showed that a strong copper-type deformation texture was obtained in the heavy cold-rolled substrate.In addition,the recrystallization annealing process was found to be very important for the texture transition in the Cu–Ni alloy substrates.The cube texture content in the Cu60 Ni40 alloy substrates reached 99.7%(≤10°) after optimization of the cold-rolling procedure and the recrystallizing heat-treatment process,whereas the content of low-angle grain boundaries(from 2° to 10° misorientation) in the substrate reached 95.1%.展开更多
Precipitation behavior of P550 steel for non-magnetic drill collars was investigated by microstructure characterization as well as thermodynamic calculation.The results demonstrate that the main precipitate formed at ...Precipitation behavior of P550 steel for non-magnetic drill collars was investigated by microstructure characterization as well as thermodynamic calculation.The results demonstrate that the main precipitate formed at 650–900℃was cellular Cr_(2)N,and its precipitation depended heavily on the aging temperature.The most sensitive precipitation temperature of cellular Cr_(2)N was 750℃.At 750℃,the cellular Cr_(2)N exhibited fast-slow precipitation kinetics with the aging time prolonging.The initial precipitation of cellular Cr_(2)N was governed by the short-range intergranular diffusion of Cr.During long-term aging,its growth was controlled by the long-range bulk diffusion of Cr.In addition,cellular Cr_(2)N induced the precipitation of r phase ahead of the cell after long period of aging.Increasing the nitrogen content resulted in the increment of both the nucleation site and the driving force for the cellular Cr_(2)N,which jointly promoted its precipitation.展开更多
Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based dir...Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.展开更多
基金Sponsored by National Natural Science Foundation of China(51271035)Specialized Research Fund for the Doctoral Program of Higher Education of China(20110006110007)
文摘Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning electron microscopy, electron back-scattered diffraction, transmission electron microscopy, X-ray diffraction and tensile test. It was found that the microstructure of the high manganese steel was refined by the Nb addition. Moreover, steel with Nb addition has a higher stacking fault energy which favors the deformation twinning, Twin ning is the most important deformation mechanism in the Nb-bearing steel. Therefore, steel with Nb addition has much higher strength and higher plasticity. The product of tensile strength and total elongation exceeds 61.8 GPa ·%. In addition, steel with Nb addition also has excellent non magnetic property.
文摘As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.
基金the National Nat-ural Science Foundation of China(Grant Nos.U1960203,51774074 and 51434004)Shanxi Municipal Major Science and Technology Project(Grant No.20181101014)+2 种基金Fundamental Research Funds for the Central Universities(Grant Nos.N172512033 and N2024005-4)Talent Project of Revitalizing Liaoning(XLYC1902046)State Key Laboratory of Metal Material for Marine Equipment and Application(Grant No.HG-SKL(2019)13).
文摘High-nitrogen (N) austenitic stainless steel (Cr-Mn-N series) is commonly used for non-magnetic drill collars, which exhibits excellent mechanical properties and corrosion resistance. The effects of N content (0.63 to 0.86 wt.%) on the pitting corrosion behavior of the experimental non-magnetic drill collar steel were investigated using the electrochemical tests and immersion tests. Besides, X-ray photoelectron spectroscopy was used to analyze the constitution of the passive film. The results show that with the enhancement of N content from 0.63 to 0.86 wt.%, the metastable pitting corrosion sensitivity of the tested materials in 3.5 wt.% NaCl solution decreased and the pitting corrosion resistance increased. Meanwhile, the corrosion rate in 6 wt.% FeCl3 solution at 30 ℃ decreased from 10.40 to 4.93 mm/a. On the other hand, nitrogen was concentrated in the form of ammonia (NH4+ and NH3)on the outermost surface of the passive films. The contents of Cr2O3 and Fe2O3 raised in the passive films, together with the content of CrN, at metal/film interface increased as N content increased from 0.63 to 0.86 wt.%, which facilitated protective ability of the passive films, thus contributing to higher pitting corrosion resistance.
基金Project(20776163) supported by the National Natural Science Foundation of ChinaProject(20070533121) supported by the PhD Programs Foundation of Ministry of Education of ChinaProject supported by the NSFC-JSPS Cooperation Program
文摘The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanopartieles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.
基金financially supported by the National Natural Science Foundation of China (No.51571002)the Beijing Natural Science Foundation (No.2172008)+4 种基金the Doctoral Program of Higher Education of Special Research Fund of China (No.20121103110012)the Beijing Municipal Natural Science Foundation B Type (No.KZ201310005003)the China Scholarship Councilthe Technology Program of Beijing CityBeijing University of Technology
文摘In this work,a series of specimens was prepared by the casting method.Sharp cube-textured substrates were processed by heavy cold rolling and recrystallization annealing(i.e.,the rolling-assisted biaxially textured substrates(RABi TS) method).Both the rolling and the recrystallization texture in the alloy tapes were investigated by X-ray diffraction and electron back-scatter diffraction,respectively.The results showed that a strong copper-type deformation texture was obtained in the heavy cold-rolled substrate.In addition,the recrystallization annealing process was found to be very important for the texture transition in the Cu–Ni alloy substrates.The cube texture content in the Cu60 Ni40 alloy substrates reached 99.7%(≤10°) after optimization of the cold-rolling procedure and the recrystallizing heat-treatment process,whereas the content of low-angle grain boundaries(from 2° to 10° misorientation) in the substrate reached 95.1%.
基金the National Natural Science Foundation of China(Grant Nos.U1960203 and 51774074)Shanxi Municipal Major Science&Technology Project(Grant No.20181101014)+2 种基金Fundamental Research Funds for the Central Universities(Grant Nos.N172512033 and N2024005-4)Talent Project of Revitalizing Liaoning(XLYC1902046)State Key Laboratory of Metal Material for Marine Equipment and Application(Grant No.HG-SKL(2019)13).
文摘Precipitation behavior of P550 steel for non-magnetic drill collars was investigated by microstructure characterization as well as thermodynamic calculation.The results demonstrate that the main precipitate formed at 650–900℃was cellular Cr_(2)N,and its precipitation depended heavily on the aging temperature.The most sensitive precipitation temperature of cellular Cr_(2)N was 750℃.At 750℃,the cellular Cr_(2)N exhibited fast-slow precipitation kinetics with the aging time prolonging.The initial precipitation of cellular Cr_(2)N was governed by the short-range intergranular diffusion of Cr.During long-term aging,its growth was controlled by the long-range bulk diffusion of Cr.In addition,cellular Cr_(2)N induced the precipitation of r phase ahead of the cell after long period of aging.Increasing the nitrogen content resulted in the increment of both the nucleation site and the driving force for the cellular Cr_(2)N,which jointly promoted its precipitation.
基金Project(2011GH561685)supported by the China Torch Program
文摘Solid wastes derived from metallurgical industries pose a significant threat to environment. The utilization and disposal of these solid wastes are the major concern in the world. Semi-coke generated in coal-based direct reduction process of iron ore is a by-product and its suitable utilization is not available so far. In order to handle it properly, the characteristics of this by-product were comprehensively investigated. A series of analysis methods were used to demonstrate its mineral compositions, petrography and physico-chemical properties. The results reveal that the semi-coke has poor washability. The fixed carbon content of semi-coke reaches 76.11% and the gross calorific value is 28.10 MJ/kg, both of which are similar to those of traditional sinter coke breeze. Also, semi-coke ash possesses lower content of SiO2, Al2O3, S and higher content of CaO and MgO, which could improve the strength of sinter ore when partially substituting for coke breeze in sintering. Semi-coke features well-development porous structure and higher reaction activity, which predicts that the sintering speed could be elevated to some extent when employing it as a partial replacement of coke breeze, so the studies further suggest that the potential adverse effect of the high reactivity on sintering process could be weakened by adequately coarsening the semi-coke's particle size.