In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very importan...In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very important in big data mining and analysis. This calls for advanced techniques that consider the diversity of different views,while fusing these data. Multi-view Clustering(MvC) has attracted increasing attention in recent years by aiming to exploit complementary and consensus information across multiple views. This paper summarizes a large number of multi-view clustering algorithms, provides a taxonomy according to the mechanisms and principles involved, and classifies these algorithms into five categories, namely, co-training style algorithms, multi-kernel learning, multiview graph clustering, multi-view subspace clustering, and multi-task multi-view clustering. Therein, multi-view graph clustering is further categorized as graph-based, network-based, and spectral-based methods. Multi-view subspace clustering is further divided into subspace learning-based, and non-negative matrix factorization-based methods. This paper does not only introduce the mechanisms for each category of methods, but also gives a few examples for how these techniques are used. In addition, it lists some publically available multi-view datasets.Overall, this paper serves as an introductory text and survey for multi-view clustering.展开更多
Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smar...Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.展开更多
为了在多视角聚类过程中同时考虑特征权重和数据高维性问题,提出一种基于特征加权和非负矩阵分解的多视角聚类算法(Multiview Clustering Algorithm based on Feature Weighting and Non-negative Matrix Factorization,FWNMF-MC).FWNMF...为了在多视角聚类过程中同时考虑特征权重和数据高维性问题,提出一种基于特征加权和非负矩阵分解的多视角聚类算法(Multiview Clustering Algorithm based on Feature Weighting and Non-negative Matrix Factorization,FWNMF-MC).FWNMF-MC算法根据每个视角中每个特征在聚类过程中的重要性,自动赋予不同的权值.通过将每个视角空间中的特征矩阵分解为基矩阵与系数矩阵的乘积,将多视角数据从高维空间映射到低维空间.为了有效利用每个视角信息挖掘聚簇结构,最大化每个视角在低维空间的一致性.最后实验结果表明FWNMF-MC算法的聚类效果明显优于已有的4种有代表性的多视角聚类算法.展开更多
基金supported in part by the National Natural Science Foundation of China (No. 61572407)
文摘In the big data era, the data are generated from different sources or observed from different views. These data are referred to as multi-view data. Unleashing the power of knowledge in multi-view data is very important in big data mining and analysis. This calls for advanced techniques that consider the diversity of different views,while fusing these data. Multi-view Clustering(MvC) has attracted increasing attention in recent years by aiming to exploit complementary and consensus information across multiple views. This paper summarizes a large number of multi-view clustering algorithms, provides a taxonomy according to the mechanisms and principles involved, and classifies these algorithms into five categories, namely, co-training style algorithms, multi-kernel learning, multiview graph clustering, multi-view subspace clustering, and multi-task multi-view clustering. Therein, multi-view graph clustering is further categorized as graph-based, network-based, and spectral-based methods. Multi-view subspace clustering is further divided into subspace learning-based, and non-negative matrix factorization-based methods. This paper does not only introduce the mechanisms for each category of methods, but also gives a few examples for how these techniques are used. In addition, it lists some publically available multi-view datasets.Overall, this paper serves as an introductory text and survey for multi-view clustering.
基金Supported by Shaanxi Provincial Overall Innovation Project of Science and Technology,China(Grant No.2013KTCQ01-06)
文摘Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, thc time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classitythe high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.
文摘为了在多视角聚类过程中同时考虑特征权重和数据高维性问题,提出一种基于特征加权和非负矩阵分解的多视角聚类算法(Multiview Clustering Algorithm based on Feature Weighting and Non-negative Matrix Factorization,FWNMF-MC).FWNMF-MC算法根据每个视角中每个特征在聚类过程中的重要性,自动赋予不同的权值.通过将每个视角空间中的特征矩阵分解为基矩阵与系数矩阵的乘积,将多视角数据从高维空间映射到低维空间.为了有效利用每个视角信息挖掘聚簇结构,最大化每个视角在低维空间的一致性.最后实验结果表明FWNMF-MC算法的聚类效果明显优于已有的4种有代表性的多视角聚类算法.