The Cox proportional hazard model is being used extensively in oncology in studying the relationship between survival times and prognostic factors. The main question that needs to be addressed with respect to the appl...The Cox proportional hazard model is being used extensively in oncology in studying the relationship between survival times and prognostic factors. The main question that needs to be addressed with respect to the applicability of the Cox PH model is whether the proportional hazard assumption is met. Failure to justify the subject assumption will lead to misleading results. In addition, identifying the correct functional form of the continuous covariates is an important aspect in the development of a Cox proportional hazard model. The purpose of this study is to develop an extended Cox regression model for breast cancer survival data which takes non-proportional hazards and non-linear effects that exist in prognostic factors into consideration. Non-proportional hazards and non-linear effects are detected using methods based on residuals. An extended Cox model with non-linear effects and time-varying effects is proposed to adjust the Cox proportional hazard model. Age and tumor size were found to have nonlinear effects. Progesterone receptor assay status and age violated the proportional hazard assumption in the Cox model. Quadratic effect of age and progesterone receptor assay status had hazard ratio that changes with time. We have introduced a statistical model to overcome the presence of the proportional hazard assumption violation for the Cox proportional hazard model for breast cancer data. The proposed extended model considers the time varying nature of the hazard ratio and non-linear effects of the covariates. Our improved Cox model gives a better insight on the hazard rates associated with the breast cancer risk factors.展开更多
The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical...The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.展开更多
文摘The Cox proportional hazard model is being used extensively in oncology in studying the relationship between survival times and prognostic factors. The main question that needs to be addressed with respect to the applicability of the Cox PH model is whether the proportional hazard assumption is met. Failure to justify the subject assumption will lead to misleading results. In addition, identifying the correct functional form of the continuous covariates is an important aspect in the development of a Cox proportional hazard model. The purpose of this study is to develop an extended Cox regression model for breast cancer survival data which takes non-proportional hazards and non-linear effects that exist in prognostic factors into consideration. Non-proportional hazards and non-linear effects are detected using methods based on residuals. An extended Cox model with non-linear effects and time-varying effects is proposed to adjust the Cox proportional hazard model. Age and tumor size were found to have nonlinear effects. Progesterone receptor assay status and age violated the proportional hazard assumption in the Cox model. Quadratic effect of age and progesterone receptor assay status had hazard ratio that changes with time. We have introduced a statistical model to overcome the presence of the proportional hazard assumption violation for the Cox proportional hazard model for breast cancer data. The proposed extended model considers the time varying nature of the hazard ratio and non-linear effects of the covariates. Our improved Cox model gives a better insight on the hazard rates associated with the breast cancer risk factors.
文摘The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.