Remote sensing (RS) of land surface temperature (LST) is a very challenging problem at the present development stage of RS science. Tremendous efforts have been devoted to atmosphere correction and temperature emissiv...Remote sensing (RS) of land surface temperature (LST) is a very challenging problem at the present development stage of RS science. Tremendous efforts have been devoted to atmosphere correction and temperature emissivity separation (TES) of new LST product algorithms. However, the mechanism of directionality of thermal emission from land surface remains unknown, and even worse, there are confusions on the definition of the effective emissivity of land surface at the scale of RS pixels. The mechanism of directionality of thermal emission展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
为提高镁合金板材拉深性能,提出一种基于固体颗粒介质成形(Solid granules medium forming,SGMF)工艺的镁合金板材差温拉深工艺。以单向拉伸试验获取的AZ31B镁合金板材真应力—应变曲线和颗粒材料性能试验构建的介质线性Drucker-Prage...为提高镁合金板材拉深性能,提出一种基于固体颗粒介质成形(Solid granules medium forming,SGMF)工艺的镁合金板材差温拉深工艺。以单向拉伸试验获取的AZ31B镁合金板材真应力—应变曲线和颗粒材料性能试验构建的介质线性Drucker-Prager本构模型为基础,采用有限元法对板材拉深成形进行热力耦合数值模拟并进行试验验证,研究压边力、压边间隙和温度对板材拉深性能的影响。结果表明:压边间隙和压边力联合控制比单纯控制压边力或是压边间隙更能有效地提高板材拉深性能;AZ31B镁合金板材在拉深过程中对温度有较强敏感性,板材变形温度为250~300℃,颗粒介质与其温差100~150℃时,板材达到最佳拉深性能;颗粒介质能够对工件筒壁部位提供轴向摩擦力,该摩擦力能有效提高材料拉深性能并保证板厚的均匀性,这是SGMF工艺的优势所在。展开更多
The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic para...The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.展开更多
以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度...以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度范围是550~650℃,在676℃时有个最大吸热峰,此后菱镁矿分解吸收的热量逐渐减小,当煅烧温度达到720℃后,菱镁矿吸收的热量又不断增加,而在720℃后,菱镁矿的失重率没有变化,说明有明显的晶格转变在消耗能量。利用Freeman-Carroll的差减微分法对细粒级菱镁矿进行非等温热分解计算分析,得到细粒级菱镁矿的活化能E为76.989 k J/mol,指前因子A为2.36×10^5,反应级数n为2/3,因此菱镁矿热分解过程属于三维相界反应模型(R3)。展开更多
Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation...Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.展开更多
文摘Remote sensing (RS) of land surface temperature (LST) is a very challenging problem at the present development stage of RS science. Tremendous efforts have been devoted to atmosphere correction and temperature emissivity separation (TES) of new LST product algorithms. However, the mechanism of directionality of thermal emission from land surface remains unknown, and even worse, there are confusions on the definition of the effective emissivity of land surface at the scale of RS pixels. The mechanism of directionality of thermal emission
基金National Natural Science Foundation of China(No.20573098)Science and Technology Foundation of the National Defence Key Laboratory of Propellant and Explosive Combustion of China(9140C3501050701)
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
文摘为提高镁合金板材拉深性能,提出一种基于固体颗粒介质成形(Solid granules medium forming,SGMF)工艺的镁合金板材差温拉深工艺。以单向拉伸试验获取的AZ31B镁合金板材真应力—应变曲线和颗粒材料性能试验构建的介质线性Drucker-Prager本构模型为基础,采用有限元法对板材拉深成形进行热力耦合数值模拟并进行试验验证,研究压边力、压边间隙和温度对板材拉深性能的影响。结果表明:压边间隙和压边力联合控制比单纯控制压边力或是压边间隙更能有效地提高板材拉深性能;AZ31B镁合金板材在拉深过程中对温度有较强敏感性,板材变形温度为250~300℃,颗粒介质与其温差100~150℃时,板材达到最佳拉深性能;颗粒介质能够对工件筒壁部位提供轴向摩擦力,该摩擦力能有效提高材料拉深性能并保证板厚的均匀性,这是SGMF工艺的优势所在。
基金Project 50474056 supported by the National Natural Science Foundation of China
文摘The pyrolysis kinetics of three different kinds of fresh biomass (grass: triple A, wheat straw, corn straw) in nitrogen flow were studied by thermogravimetric analysis at five different heating rates. The kinetic parameters of the pyrolysis process were calculated using the method of Ozawa-Flynn-Wall and the mechanism of reactions were investi- gated using the method of Popescu. It was found that the values of activation energy varied in different temperature ranges. The pyrolysis processes are well described by the models of Zhuravlev (Zh) and valid for diffusion-controlled between 200 ℃ and 280 ℃, by Ginstling-Brounshtein (G-B), valid for diffusion-control between 280 ℃ and 310 ℃, for first-order chemical reaction between 310℃ and 350 ℃, by Zhuravlev (Zh) valid for diffusion-control between 350 ℃ and 430 ℃ and by the one-way transport model when temperatures are over 430 ℃.
文摘以细粒级菱镁矿(-0.074 mm)为原料,利用TG-DTG和TG-DSC热分析法对其进行非等温热分解动力学研究。结果表明:氩气气氛中,在升温速率10℃/min的条件下,细粒级菱镁矿开始分解温度为360℃,与理论值355℃接近;细粒级菱镁矿主要热分解温度范围是550~650℃,在676℃时有个最大吸热峰,此后菱镁矿分解吸收的热量逐渐减小,当煅烧温度达到720℃后,菱镁矿吸收的热量又不断增加,而在720℃后,菱镁矿的失重率没有变化,说明有明显的晶格转变在消耗能量。利用Freeman-Carroll的差减微分法对细粒级菱镁矿进行非等温热分解计算分析,得到细粒级菱镁矿的活化能E为76.989 k J/mol,指前因子A为2.36×10^5,反应级数n为2/3,因此菱镁矿热分解过程属于三维相界反应模型(R3)。
基金supported by the National Key R&D Program of China (2018YFC0807900)“Double First Rate” Independent Innovation Project of CUMT (2018ZZCX05)
文摘Nitrogen is widely used to prevent the spontaneous combustion of coal in underground coal mines. A spontaneous combustion-prone coal seam was studied to investigate the restraining effect of nitrogen on coal oxidation in different oxidation stages, based on non-isothermal thermogravimetry-differential scanning calorimetry(TG-DSC) and electron paramagnetic resonance(EPR) experiments. We found that the key feature temperatures grow steadily with increasing nitrogen in the oxidation environment,resulting in longer oxidation stages. The most significant finding is that there is a stagnation of the inhibitory effect of nitrogen on coal oxidation in the range of 85.0–95.0% nitrogen in the slow and the rapid oxidation stages, owing to the competitive adsorption of coal by nitrogen and oxygen. However, the restraining effect cannot be reflected by the kinetic parameters of the coal before it reaches the thermal decomposition and combustion stage. Nitrogen can also affect free radical types and free radical concentrations during coal oxidation: the higher the concentration of nitrogen in the oxidation environment, the greater the number of free radical types and the lower the free radical concentration. This experimental study improves the understanding of the restraining effect of nitrogen on coal oxidation in different oxidation stages and provides an important reference for coal fire prevention in spontaneous combustionprone coal seams.