Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous...Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.展开更多
To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plat- eau, we make use of continuous observations of seismic ambient noise data obtained at 5...To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plat- eau, we make use of continuous observations of seismic ambient noise data obtained at 55 broadband stations from the regional Yunnan Seismic Network. These data are used to compute Rayleigh wave Green's Functions by cross-correlating between two stations, extracting phase velocity dispersion curves, and finally inverting to image Rayleigh wave phase velocity with periods between 5 and 34 s by ambient noise tomography. The results tie structures in the studied region. Phase velocity anomalies show significant lateral variations in crustal and uppermost man- at short periods (5-12 s) are closely related to regional tectonic features such as sediment thickness and the depth of the crystalline basement. The Sichuan-Yunnan rhombic block, enclosed by the Honghe, Xiaojiang and Jianchuan faults, emerges as a large range of low-velocity anomalies at periods of 16-26 s, that in- verts to high-velocity anomalies at periods of 30-34 s. The phase velocity variation in the vicinity of the Sichuan-Yunnan rhombic block suggests that the low-velocity anomaly area in the middle-lower crust may correspond to lower crustal channel- ized flow of the Tibetan Plateau. The spatial distribution of strong earthquakes since 1970 reveals that the Yunnan region is inhomogeneous and shows prominent characteristics of block motion. However, earthquakes mostly occur in the upper crust, with the exception of the middle-Yunnan block where earthquakes occur at the interface zone between high and low velocity as well as in the low-velocity zones, with magnitudes being generally less than 7. There are few earthquakes of magnitude 5 at the depths of 15-30 km, where gather earthquakes of magnitude 7 or higher ones which mainly occur in the interface zone between high and low velocities with others extending to the high-velocity abnormal zone.展开更多
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin...We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.展开更多
The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array am...The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array ambient noise tomography to construct a threedimensional shear wave velocity model of shallow crust in an area about 80km×70km in Lujiang,Anhui Province,eastern China.For approximately one month we collected continuous ambient noise signals recorded by 90 short-period seismographs in the region,and obtained the short-period Rayleigh wave empirical Green's functions between stations by the cross-correlation method;we also extracted 0.5–8 s fundamental mode Rayleigh wave group velocity and phase velocity dispersion curves.Based on the direct surface wave tomography method,we jointly inverted the group velocity and phase velocity dispersion data of all paths and obtained the 3-D shear wave velocity structure in the depth range of 0–5 km.The results revealed important geological structural features of the study area.In the north region,the sedimentary center of the Hefei Basin—the southwestern part of the Chaohu Lake—shows a significant low-velocity anomaly to a depth of at least 5 km.The southwestern and southeastern regions of the array are the eastern margin of the Dabie orogenic belt and the intrusion area of Luzong volcanic rocks,respectively,and both show obvious high-speed anomalies;the sedimentary area within the Tan-Lu fault zone(about 10 km wide)shows low-velocity anomalies.However,the volcanic rock intrusion area in the fault zone is shown as high velocity.Our shallow crustal imaging results reflect the characteristics of different structures in the study area,especially the high-speed intrusive rocks in the Tan-Lu fault zone,which were probably partially derived from the magmatic activity of Luzong volcanic basin.From the Late Cretaceous to Early Tertiary,the Tan-Lu fault zone was in a period of extensional activity;the special stress environment and the fractured fault zone morphology展开更多
Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and t...Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and the potential increase in the incidence of radiation induced carcinogenesis.This study aimed to investigate the lowest radiation dose for maintaining good image quality in adult chest scanning using GE CT equipment.Methods Seventy-two adult patients were examined by Gemstone Spectral CT.They were randomly divided into six groups.We set up a different value of noise index (NI) when evaluating each group every other number from 13.0 to 23.0.The original images were acquired with a slice of 5 mm thickness.For each group,several image series were reconstructed using different levels of adaptive statistical iterative reconstruction (ASIR) (30%,50%,and 70%).We got a total of 18 image sequences of different combinations of NI and ASIR percentage.On one hand,quantitative indicators,such as CT value and standard deviation (SD),were assessed at the region of interest.The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated.The volume CT dose index (CTDI) and dose length product (DLP) were recorded.On the other hand,two radiologists with >5 years of experience blindly reviewed the subjective image quality using the standards we had previously set.Results The different combinations of noise index and ASIR were assessed.There was no significant difference in CT values among the 18 image sequences.The SD value was reduced with the noise index's reduction or ASIR's increase.There was a trend towards gradually lower SNR and CNR with an NI increase.The CTDI and DLP were diminishing as the NI increased.The scores from subjective image quality evaluation were reduced in all groups as the ASIR increased.Conclusions Increasing NI can reduce radiation dose.With the premise of maintaining the same image quality,using a suitable percentage of ASIR can inc展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.41074052,41174086,40974034)Key project from Institute of Geodesy and Geophysics,Chinese Academy of Sciences,and Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.41021003)
文摘Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.
基金supported by National Natural Science Foundation of China(Grant No.41174042)China National Special Fund for Earthquake Scientific Research in Public Interest(Grant No.201008001)
文摘To investigate the relationship between velocity structure and earthquake activity on the southeastern front of the Tibetan Plat- eau, we make use of continuous observations of seismic ambient noise data obtained at 55 broadband stations from the regional Yunnan Seismic Network. These data are used to compute Rayleigh wave Green's Functions by cross-correlating between two stations, extracting phase velocity dispersion curves, and finally inverting to image Rayleigh wave phase velocity with periods between 5 and 34 s by ambient noise tomography. The results tie structures in the studied region. Phase velocity anomalies show significant lateral variations in crustal and uppermost man- at short periods (5-12 s) are closely related to regional tectonic features such as sediment thickness and the depth of the crystalline basement. The Sichuan-Yunnan rhombic block, enclosed by the Honghe, Xiaojiang and Jianchuan faults, emerges as a large range of low-velocity anomalies at periods of 16-26 s, that in- verts to high-velocity anomalies at periods of 30-34 s. The phase velocity variation in the vicinity of the Sichuan-Yunnan rhombic block suggests that the low-velocity anomaly area in the middle-lower crust may correspond to lower crustal channel- ized flow of the Tibetan Plateau. The spatial distribution of strong earthquakes since 1970 reveals that the Yunnan region is inhomogeneous and shows prominent characteristics of block motion. However, earthquakes mostly occur in the upper crust, with the exception of the middle-Yunnan block where earthquakes occur at the interface zone between high and low velocity as well as in the low-velocity zones, with magnitudes being generally less than 7. There are few earthquakes of magnitude 5 at the depths of 15-30 km, where gather earthquakes of magnitude 7 or higher ones which mainly occur in the interface zone between high and low velocities with others extending to the high-velocity abnormal zone.
基金supported by National Science Foundation of United States (EAR-0838188) and Department of Geology, UIUCsupported by NSF-EAR award 0944022 and a sub-award from NSF-OISE 0730154
文摘We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.
基金the National Natural Science Foundation of China(project 41790464)the China Postdoctoral Fund(BH2080000099).
文摘The Tan-Lu fault zone is a large NNE-trending fault zone in eastern China.Investigations of the structures of the fault zone and its surrounding areas have attracted much attention.In this study,we used dense-array ambient noise tomography to construct a threedimensional shear wave velocity model of shallow crust in an area about 80km×70km in Lujiang,Anhui Province,eastern China.For approximately one month we collected continuous ambient noise signals recorded by 90 short-period seismographs in the region,and obtained the short-period Rayleigh wave empirical Green's functions between stations by the cross-correlation method;we also extracted 0.5–8 s fundamental mode Rayleigh wave group velocity and phase velocity dispersion curves.Based on the direct surface wave tomography method,we jointly inverted the group velocity and phase velocity dispersion data of all paths and obtained the 3-D shear wave velocity structure in the depth range of 0–5 km.The results revealed important geological structural features of the study area.In the north region,the sedimentary center of the Hefei Basin—the southwestern part of the Chaohu Lake—shows a significant low-velocity anomaly to a depth of at least 5 km.The southwestern and southeastern regions of the array are the eastern margin of the Dabie orogenic belt and the intrusion area of Luzong volcanic rocks,respectively,and both show obvious high-speed anomalies;the sedimentary area within the Tan-Lu fault zone(about 10 km wide)shows low-velocity anomalies.However,the volcanic rock intrusion area in the fault zone is shown as high velocity.Our shallow crustal imaging results reflect the characteristics of different structures in the study area,especially the high-speed intrusive rocks in the Tan-Lu fault zone,which were probably partially derived from the magmatic activity of Luzong volcanic basin.From the Late Cretaceous to Early Tertiary,the Tan-Lu fault zone was in a period of extensional activity;the special stress environment and the fractured fault zone morphology
文摘Background Currently there is a trend towards reducing radiation dose while maintaining image quality during computer tomography (CT) examination.This results from the concerns about radiation exposure from CT and the potential increase in the incidence of radiation induced carcinogenesis.This study aimed to investigate the lowest radiation dose for maintaining good image quality in adult chest scanning using GE CT equipment.Methods Seventy-two adult patients were examined by Gemstone Spectral CT.They were randomly divided into six groups.We set up a different value of noise index (NI) when evaluating each group every other number from 13.0 to 23.0.The original images were acquired with a slice of 5 mm thickness.For each group,several image series were reconstructed using different levels of adaptive statistical iterative reconstruction (ASIR) (30%,50%,and 70%).We got a total of 18 image sequences of different combinations of NI and ASIR percentage.On one hand,quantitative indicators,such as CT value and standard deviation (SD),were assessed at the region of interest.The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated.The volume CT dose index (CTDI) and dose length product (DLP) were recorded.On the other hand,two radiologists with >5 years of experience blindly reviewed the subjective image quality using the standards we had previously set.Results The different combinations of noise index and ASIR were assessed.There was no significant difference in CT values among the 18 image sequences.The SD value was reduced with the noise index's reduction or ASIR's increase.There was a trend towards gradually lower SNR and CNR with an NI increase.The CTDI and DLP were diminishing as the NI increased.The scores from subjective image quality evaluation were reduced in all groups as the ASIR increased.Conclusions Increasing NI can reduce radiation dose.With the premise of maintaining the same image quality,using a suitable percentage of ASIR can inc