期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
网络表示学习在学者科研合作预测中的应用研究 被引量:18
1
作者 林原 王凯巧 +3 位作者 刘海峰 许侃 丁堃 孙晓玲 《情报学报》 CSSCI CSCD 北大核心 2020年第4期367-373,共7页
在大数据环境下,科研合作是提高科研水平、促进科研产出的重要途径。如何在浩如烟海的学者、机构、领域信息中准确地找到与自身研究方向相近的合作对象是近年来科研合作预测的研究重点。本文通过科学学领域科学文献的记录数据,构建作者... 在大数据环境下,科研合作是提高科研水平、促进科研产出的重要途径。如何在浩如烟海的学者、机构、领域信息中准确地找到与自身研究方向相近的合作对象是近年来科研合作预测的研究重点。本文通过科学学领域科学文献的记录数据,构建作者-作者、机构-机构、作者-机构、作者-关键词、机构-关键词的共现网络,接着通过网络表示方法学习作者、机构、关键词在所处网络中的语境信息,将信息实体表示成相同空间的低维稠密向量,最后根据表示向量的相似度计算实现合作对象、合作领域挖掘。通过网络表示学习方法能实现多种异质信息融合,定量计算各信息实体间的关联强度,可以很好地捕捉科研网络中学者-学者、学者-机构、学者-关键词的关系,准确地为学者挖掘潜在合作者、合作机构和关键词。 展开更多
关键词 合作推荐 科研预测 网络表示学习 node2vec
下载PDF
一种知识图谱的排序学习个性化推荐算法 被引量:15
2
作者 杨晋吉 胡波 +2 位作者 王欣明 伍昱燊 赵淦森 《小型微型计算机系统》 CSCD 北大核心 2018年第11期2419-2423,共5页
推荐系统是解决"信息过载"的有效方法,提出一种知识图谱的排序学习个性化推荐算法.本文算法首先构建融合上下文信息的知识图谱,使用基于深度学习的网络表示方法 Node2Vec抽取知识图谱特征,通过将排序学习模型产生的反馈模型... 推荐系统是解决"信息过载"的有效方法,提出一种知识图谱的排序学习个性化推荐算法.本文算法首先构建融合上下文信息的知识图谱,使用基于深度学习的网络表示方法 Node2Vec抽取知识图谱特征,通过将排序学习模型产生的反馈模型与用户兴趣迁移模型结合,构建混合推荐模型,最终通过排序学习进行Top-N推荐.该算法能够将各种不同性质的上下文特征结合在一起,并通过排序学习衡量这些多维特征的权重比例,解决了不同特征的融合问题,并且能够考虑到用户兴趣迁移和长短期偏好.在Movielens 1M数据集上的对比实验验证文中算法的有效性,实验表明,该算法能够有效提高推荐的P@N和MAP值. 展开更多
关键词 知识图谱 排序学习 兴趣迁移 node2vec 上下文信息
下载PDF
基于PageRank和Node2vec的研究热点与集群发现——以国际深度学习研究领域为例 被引量:10
3
作者 霍朝光 魏瑞斌 张斌 《情报杂志》 CSSCI 北大核心 2020年第8期174-179,153,共7页
[目的/意义]为有效挖掘领域研究热点与集群,规避单纯基于频次统计的热点排序方法所存在的弊端,以及基于高频关键词共词网络集群发现方法所带来的偏差。[方法/过程]提出利用无向加权PagaRank算法进行研究热点排序,综合考量关键词之间共... [目的/意义]为有效挖掘领域研究热点与集群,规避单纯基于频次统计的热点排序方法所存在的弊端,以及基于高频关键词共词网络集群发现方法所带来的偏差。[方法/过程]提出利用无向加权PagaRank算法进行研究热点排序,综合考量关键词之间共现的数量和质量,同时强调全部关键词共词网络的重要性,综合Node2vec表示学习和t-SNE聚类算法对全部关键词进行集群发现,以国际深度学习领域研究文献为例,分别进行热点排序和集群发现。[结果/结论]研究表明PageRank算法不仅能够区分频次统计算法无法区分的排名,而且从整体网络结构衡量研究热点,综合考量共现的数量和质量,使排序结果更为准确;整合Node2vec和t-SNE算法进行研究集群发现,可有效改善单纯利用高频关键词进行集群发现的不足,避免在有限的关联密切的高频关键词之间强制分门别类;综合热点和集群发现方法,可在凸显热点的基础上描述集群细节,有效揭示集群脉络。 展开更多
关键词 深度学习 热点排序 集群发现 node2vec PAGERANK
下载PDF
融合加权异质网络与网络表示学习的学术信息推荐研究 被引量:4
4
作者 熊回香 唐明月 +2 位作者 叶佳鑫 詹晓敏 王妞妞 《现代情报》 2023年第5期23-34,共12页
[目的/意义]21世纪互联网技术的发展为学术研究提供了开放的交流平台,科研信息资源由此呈指数增长,学者难以从繁杂的信息中快捷获取所需信息,从而导致学术资源利用率低下。学术资源精准化、个性化推荐,成为了提高学术信息流转效率和实... [目的/意义]21世纪互联网技术的发展为学术研究提供了开放的交流平台,科研信息资源由此呈指数增长,学者难以从繁杂的信息中快捷获取所需信息,从而导致学术资源利用率低下。学术资源精准化、个性化推荐,成为了提高学术信息流转效率和实现价值增值的有效途径。[方法/过程]本文利用文献发表时间因子与文献语义相似度对异质信息网络进行加权,并基于此加权网络采用Node2vec进行有偏随机游走生成图节点序列,然后利用Skip-gram语言模型进行序列学习,最终计算节点向量的相似度以实现学术信息推荐。[结果/结论]以CNKI中的数据集为例对本文所提出的模型进行验证,实证结果表明,使用该模型推荐的论文与学者,一方面与目标学者的研究方向相符合;另一方面在时间维度上也较为精准,能够有效满足学者信息需求。 展开更多
关键词 异质信息网络 学术信息推荐 node2vec 语义相似度
下载PDF
一种融合网络表示学习与XGBoost的评分预测模型 被引量:7
5
作者 丁勇 陈夕 +1 位作者 蒋翠清 王钊 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第11期52-62,共11页
【目的】基于丰富的元数据和评分数据,提出一种融合网络表示学习与XGBoost的评分预测模型——N2V_XGB。【方法】提取并融合元数据和评分数据的相似性权重,构建同质关系网络;利用网络表示学习自动提取用户和项目特征,再将提取的特征作为X... 【目的】基于丰富的元数据和评分数据,提出一种融合网络表示学习与XGBoost的评分预测模型——N2V_XGB。【方法】提取并融合元数据和评分数据的相似性权重,构建同质关系网络;利用网络表示学习自动提取用户和项目特征,再将提取的特征作为XGBoost的输入,迭代训练获得最佳的评分预测模型。【结果】实验表明,N2V_XGB模型的MAE和RMSE分别为0.6867、0.8737,低于4种主要的对比模型。【局限】N2V_XGB模型未能很好地利用时间特征信息,评分结果没有反映时序变化。【结论】N2V_XGB模型将网络表示学习与XGBoost算法进行有效融合,能够缓解数据稀疏,提高用户评分的预测精度。 展开更多
关键词 网络表示学习 XGBoost 评分预测 协同过滤 node2vec
原文传递
新兴技术的多指标量化识别研究--基于向量表征方法的探索 被引量:5
6
作者 孙蒙鸽 王燕鹏 +1 位作者 韩涛 刘盼盼 《图书情报工作》 CSSCI 北大核心 2022年第3期130-139,共10页
[目的/意义]立足计量视角,通过对新兴技术特征的量化评价识别“目前处于科学研究阶段、尚未完全进入产业研发落地”的新兴技术。[方法/过程]借助Node2Vec网络表征方法,从术语共现网络中学习技术术语的向量表示;以此为基础量化新兴技术... [目的/意义]立足计量视角,通过对新兴技术特征的量化评价识别“目前处于科学研究阶段、尚未完全进入产业研发落地”的新兴技术。[方法/过程]借助Node2Vec网络表征方法,从术语共现网络中学习技术术语的向量表示;以此为基础量化新兴技术“过去、现在及未来”三大时间维度特征-“融合性、新颖性及潜在的科学影响力”,用特征值筛选技术主题是否具有新兴性,由此探索得到向量表征视角下的新兴技术识别模型。最后以航空领域为例进行实证研究,验证该方法的科学性和合理性。[结果/结论]通过引入“术语向量表征”的计算视角,有效编码了术语实体间显性和隐性的关联关系,提升了新兴技术特征计算的客观性;同时结合技术的历史、当前和预测信息,从网络结构和语义特征两方面进行识别,取得了较好的效果。 展开更多
关键词 新兴技术识别 网络节点表征 链接预测 node2vec 交叉融合性
原文传递
基于改进Node2vec算法的锅炉温度场分割方法研究
7
作者 张悦 梁珊珊 《电力科学与工程》 2024年第5期72-78,共7页
针对温度场特征参数差异引发的锅炉温度场分割准确性的问题,以维持温度场特征为目标,引入图结构表达场数据,通过改进Node2vec算法进行聚类分析,进而实现锅炉温度场的最佳分割。该方法基于多维度的特征信息对锅炉温度场实现分割,能够更... 针对温度场特征参数差异引发的锅炉温度场分割准确性的问题,以维持温度场特征为目标,引入图结构表达场数据,通过改进Node2vec算法进行聚类分析,进而实现锅炉温度场的最佳分割。该方法基于多维度的特征信息对锅炉温度场实现分割,能够更准确地保留流场特征。在标准数据集上进行了实验验证,结果表明在具有多维度特征的数据集上,所提方法相比其他对比算法在分割效果方面有提升显著。最后将提出的方法用于分割电站锅炉温度场,结果表明该方法可以很好地捕捉温度场数据中的局部和全局特征,且结果具有较好的精确性。 展开更多
关键词 燃煤锅炉 温度场 流场分割 图结构 node2vec
下载PDF
基于深度学习框架的时空联合供水管网漏损检测研究
8
作者 蒋白懿 牟天蔚 +3 位作者 李维轲 王康 肖敏 王鑫 《给水排水》 CSCD 北大核心 2024年第6期152-158,共7页
以深度学习框架为基础,提出了一种时空联合供水管网漏损检测模型。该模型首先运用Node2Vec算法求解不同时间段内节点特征;其次,通过模糊C-均值聚类法,利用管网模型节点特征进行分区。最后,以不同时间段的压力敏感度作为输入,漏损位置的... 以深度学习框架为基础,提出了一种时空联合供水管网漏损检测模型。该模型首先运用Node2Vec算法求解不同时间段内节点特征;其次,通过模糊C-均值聚类法,利用管网模型节点特征进行分区。最后,以不同时间段的压力敏感度作为输入,漏损位置的分区号作为标签,通过深度信念神经网络进行训练,并通过训练后的模型对管网漏损位置进行检测。在实例分析中,以A市实际供水管网拓扑结构进行验证,利用MATLAB-Open Water Analytics toolbox联合编程建模,结果表明,各个时间段的检测效果均较优,正确率均达到为80%以上。因此,该模型能够有效地检测管网漏损。 展开更多
关键词 node2vec 深度学习 漏损定位 随机游走 图嵌入
下载PDF
数据缺失下的交通流预测方法研究
9
作者 徐东伟 朱宏俊 +1 位作者 周磊 杨艳芳 《武汉理工大学学报(交通科学与工程版)》 2024年第2期211-217,共7页
文中提出了一种基于节点向量-生成对抗网络的交通流预测方法.通过Node2vec方法实现路网邻接关系的重构,实现路网空间相关性的深度挖掘.基于残差图聚合机制构建了路网数据空间特征的生成器,实现了根据路网中的部分已知数据推演未来路网... 文中提出了一种基于节点向量-生成对抗网络的交通流预测方法.通过Node2vec方法实现路网邻接关系的重构,实现路网空间相关性的深度挖掘.基于残差图聚合机制构建了路网数据空间特征的生成器,实现了根据路网中的部分已知数据推演未来路网交通流数据.采用西雅图高速路网速度数据集(Seattle)和加州路网速度数据集(PEMS)验证模型的有效性.结果表明:该模型在不同数据缺失模式、不同数据缺失率下均可以保持鲁棒的交通流预测表现. 展开更多
关键词 智能交通 交通流预测 node2vec 数据缺失 生成对抗网络
下载PDF
基于图神经网络和随机森林的CircRNA-疾病预测
10
作者 王波 尹帅 +2 位作者 杜晓昕 张剑飞 周振宇 《高师理科学刊》 2024年第2期36-41,47,共7页
环状RNA(CircRNA)广泛参与人类疾病的进程,其突变和失调与许多人类疾病密切相关.因此,建立一个高效准确的CircRNA与疾病之间的预测算法对于提前对疾病的发生做出预防以及发病后的治疗方案具有重要意义.提出了一种新的基于图神经网络和... 环状RNA(CircRNA)广泛参与人类疾病的进程,其突变和失调与许多人类疾病密切相关.因此,建立一个高效准确的CircRNA与疾病之间的预测算法对于提前对疾病的发生做出预防以及发病后的治疗方案具有重要意义.提出了一种新的基于图神经网络和随机森林的算法预测CircRNA-疾病关联算法,在分层网络表示嵌入部分通过构建异构网络,根据网络图的邻近性,对网络图的节点和边缘进行分层,递归地合并原始图中的节点和边,得到若干具有相似特征的较小子网络.子网络规模随着分层的深入而递减,直至得到最小子网络后,使用node2vec网络图游走算法对其进行预处理,然后将全部节点的特征向量输入至随机森林分类器来识别潜在的CircRNA-疾病关联,从而进行预测. 展开更多
关键词 CircRNA-疾病关联预测 图神经网络 node2vec 随机森林
下载PDF
组合优化视角下的科技关联识别方法研究
11
作者 黄璐 蔡依洁 +1 位作者 陈翔 王长天 《科学学与科学技术管理》 CSCD 北大核心 2024年第4期118-136,共19页
以论文数据表示科学,专利数据表示技术,构建了一套基于深度学习的科学—技术关联识别方法体系。首先,利用Node2Vec和BERT模型获得论文和专利关键词的知识结构表示和文本语义表示,构建科学网络和技术网络;之后,运用Fast Unfolding社区发... 以论文数据表示科学,专利数据表示技术,构建了一套基于深度学习的科学—技术关联识别方法体系。首先,利用Node2Vec和BERT模型获得论文和专利关键词的知识结构表示和文本语义表示,构建科学网络和技术网络;之后,运用Fast Unfolding社区发现算法和Z-Score指标精准识别科学主题和技术主题;最后,构建科学—技术主题完全二分图,将科学—技术主题关联识别问题转化为二分图匹配问题,利用Kuhn-Munkres算法求解最优科技关联匹配。基于2010—2021年“自然语言处理”领域的论文与专利数据开展实证分析,验证研究方法的有效性。 展开更多
关键词 科技关联 深度学习 网络分析 node2vec BERT
原文传递
基于时间兴趣因子的网络表示学习图书推荐模型研究
12
作者 王日花 《情报工程》 2023年第1期118-127,共10页
[目的/意义]通过分析图书馆的图书流通数据,本文提出一种基于时间兴趣因子融合网络学习的图书推荐模型--TIF_N2V_CF。[方法/过程]评估用户借阅图书的时间间隔并定义兴趣因子权重,根据流通数据构建同质关系网络;网络表示学习将得到的特... [目的/意义]通过分析图书馆的图书流通数据,本文提出一种基于时间兴趣因子融合网络学习的图书推荐模型--TIF_N2V_CF。[方法/过程]评估用户借阅图书的时间间隔并定义兴趣因子权重,根据流通数据构建同质关系网络;网络表示学习将得到的特征矩阵输入融合推荐模型并得到推荐结果。[结果/结论]实验表明,TIF_N2V_CF模型的召回率在top z=10和z=20时分别为0.1302、0.2031,高于未引入时间兴趣因子的N2V_CF模型。TIF_N2V_CF模型将时间兴趣因子引入到网络表示学习,对融合用户和图书的特征矩阵进行相似度计算,解决图书借阅流通数据中同一时间包含多本图书借阅记录造成的难以序列化的问题,缓解数据稀疏和冷启动对模型性能的影响,提高了推荐精度。 展开更多
关键词 网络表示学习 node2vec 协同过滤 时间兴趣因子 Word2vec
下载PDF
基于共词和Node2Vec表示学习的新兴技术识别方法 被引量:1
13
作者 曹琨 吴新年 +2 位作者 靳军宝 郑玉荣 付爽 《数据分析与知识发现》 CSCD 北大核心 2023年第9期89-99,共11页
【目的】高效准确地识别新兴技术,帮助政府、企业等市场各参与主体及时洞察技术前沿并合理配置资源。【方法】本研究以细粒度的技术术语为研究对象,在考虑共词网络结构特征和语义表示的基础上,构建模型进行新兴术语的遴选和新兴分数的量... 【目的】高效准确地识别新兴技术,帮助政府、企业等市场各参与主体及时洞察技术前沿并合理配置资源。【方法】本研究以细粒度的技术术语为研究对象,在考虑共词网络结构特征和语义表示的基础上,构建模型进行新兴术语的遴选和新兴分数的量化,并运用Node2Vec图表示学习算法对新兴术语的向量进行编码及语义表示,实现了新兴术语和新兴技术主题的识别。【结果】在数控机床领域进行实证研究,共识别出449个新兴术语以及4个新兴技术主题(机器人自动上下料系统、清洁高效切削加工技术、高速高精度数控加工中心、增减材复合制造技术),验证了所提方法的科学性和合理性。【局限】仅使用专利文献的数据,对其他多源异构文献数据及其中存在的引用、语义相似等其他网络关系利用不足。【结论】运用共词和Node2Vec图表示学习的方法可深入挖掘技术术语间共词网络结构特征和语义表示,实现了新兴技术的细粒度精准量化识别。 展开更多
关键词 新兴技术 文本挖掘 图表示学习 node2vec
原文传递
融合node2vec和深度神经网络的隐式反馈推荐模型 被引量:5
14
作者 何瑾琳 刘学军 +1 位作者 徐新艳 毛宇佳 《计算机科学》 CSCD 北大核心 2019年第6期41-48,共8页
利用隐式反馈信息实现个性化推荐是实用且具有挑战性的研究课题。对如何有效结合辅助信息来解决数据稀疏问题从而实现高效推荐的问题进行了研究,提出了一种融合node2vec和深度神经网络的隐式反馈推荐模型。该模型采用一种嵌入元数据的... 利用隐式反馈信息实现个性化推荐是实用且具有挑战性的研究课题。对如何有效结合辅助信息来解决数据稀疏问题从而实现高效推荐的问题进行了研究,提出了一种融合node2vec和深度神经网络的隐式反馈推荐模型。该模型采用一种嵌入元数据的深度神经网络框架(Deep Neural Network Framework with Embedded Meta-data,Meta-DNN),首先将用户和项目的one-hot向量进行低维映射,再嵌入元数据信息,并结合node2vec的二阶随机游走方法学习网络中的邻居节点,使得相邻节点具有相似的节点表示,同时通过增强相邻用户和项目的平滑度来缓解数据稀疏性;最后使用深度神经网络进一步学习用户对项目的偏好,进而为用户产生推荐。其中,还引入了流行度参数对未知项目进行非平均抽样,优化隐式反馈负采样策略。在Gowalla和MovieLens-1M两个数据集上的实验表明,所提方法可以明显提高系统的预测性能和推荐质量。 展开更多
关键词 node2vec 推荐系统 神经网络 深度学习 隐式反馈 元数据
下载PDF
基于深度学习的自闭症谱系障碍fMRI数据分类研究 被引量:1
15
作者 陈茂洲 刘化东 +1 位作者 许博俊 李梦琪 《现代电子技术》 2023年第21期48-54,共7页
与健康儿童对照相比,自闭症谱系障碍(ASD)患者的脑结构和功能存在显著异常,因此文中采用脑影像的方法实现ASD的辅助诊断。由于基于传统的脑图谱构建脑网络节点依赖于人为的先验知识和假设,因此将由受试者的数据通过数据驱动的方法即独... 与健康儿童对照相比,自闭症谱系障碍(ASD)患者的脑结构和功能存在显著异常,因此文中采用脑影像的方法实现ASD的辅助诊断。由于基于传统的脑图谱构建脑网络节点依赖于人为的先验知识和假设,因此将由受试者的数据通过数据驱动的方法即独立成分分析(ICA)进行全脑独立成分(ICs)分析,并将提取的ICs作为感兴趣区域(ROI)提取时间序列,随后用计算得到的相关性矩阵构建脑网络并通过Node2vec方法将脑网络的节点向量化以生成节点特征,最后通过图卷积网络(GCN)刻画脑网络连接水平状态,并通过多层感知机(MLP)实现对ASD的识别。所用方法ICA+GCN在79名ASD患者和105名典型对照组中取得了86.1%的分类精度。综上,文中所用方法有望用于ASD辅助诊断。 展开更多
关键词 自闭症谱系障碍 独立成分分析 脑影像 脑网络 node2vec 图卷积网络 多层感知机 辅助诊断
下载PDF
融合多元网络与网络表示学习的科研合作者推荐研究 被引量:3
16
作者 杜瑾 熊回香 王妞妞 《情报资料工作》 CSSCI 北大核心 2022年第4期27-35,共9页
[目的/意义]融合多元网络和网络表示学习方法学习并发现作者间的关联性,能够更好地进行合作者推荐。[方法/过程]文章首先搜集情报学领域相关文献数据作为原始数据集,在经过数据清洗后,根据作者间的多元关系构建各信息实体的多个科研信... [目的/意义]融合多元网络和网络表示学习方法学习并发现作者间的关联性,能够更好地进行合作者推荐。[方法/过程]文章首先搜集情报学领域相关文献数据作为原始数据集,在经过数据清洗后,根据作者间的多元关系构建各信息实体的多个科研信息网络,然后对高维网络利用Node2vec网络表示学习方法学习各节点的信息,从而得到各网络中节点的向量表示。其次,通过余弦相似度计算各网络中的作者相似度。最后融合作者间机构合作偏好和作者学术水平相似度得到最终的推荐结果。[结果/结论]文章提出的融合模型考虑了多元网络和数据稀疏性,在AUC值上的表现优于单一维度,得到了更好的合作预测效果。实验结果表明,该合作者推荐模型在情报学领域作者合作者推荐中具有可行性。 展开更多
关键词 合作网络 耦合网络 网络表示学习 node2vec 合作者推荐
原文传递
MPMFC:一种融合网络邻里结构特征和专利语义特征的中药专利分类模型
17
作者 邓娜 何昕洋 +1 位作者 陈伟杰 陈旭 《数据分析与知识发现》 CSCD 北大核心 2023年第4期145-158,共14页
【目的】解决因中药自身的复杂性以及现有专利分类模型无法提取到充分的中药专利特征信息而导致的分类准确率不理想问题。【方法】提出中药专利多特征融合分类模型MPMFC:基于专利核心字段的相似度信息构建中药专利相似度网络;利用Node2... 【目的】解决因中药自身的复杂性以及现有专利分类模型无法提取到充分的中药专利特征信息而导致的分类准确率不理想问题。【方法】提出中药专利多特征融合分类模型MPMFC:基于专利核心字段的相似度信息构建中药专利相似度网络;利用Node2Vec算法从中药专利相似度网络的全局结构中捕获潜在专利间的邻里结构信息,使其映射为低维向量作为补充特征;使用注意力机制将经过RoBERTa-Tiny预训练的专利语义特征与其对应的补充特征进行特征融合,进而实现中药专利的自动化分类。【结果】在真实的7000条中药专利语料上,MPMFC模型的准确率、召回率和F1值分别达到0.8436、0.8017、0.8221,相较于基线分类模型分别提升1.58、2.59和2.11个百分点。【局限】构建中药专利相似度网络时分配权重具有一定的主观性,非中药科研人员在进行专利标注时会存在部分分类错误。【结论】MPMFC模型在中药专利分类过程中能从多角度获取并学习更丰富的特征表示,从而提高分类准确性。 展开更多
关键词 中药专利分类 专利相似度网络 特征融合 预训练模型 node2vec
原文传递
结合物品相似性的社交信任推荐算法 被引量:3
18
作者 余皑欣 冯秀芳 孙静宇 《计算机科学》 CSCD 北大核心 2022年第5期144-151,共8页
随着互联网的快速发展,用户很难在大量的网络数据中找到自己感兴趣的内容,而推荐系统能帮助解决这一问题。传统的推荐系统仅依赖用户历史行为数据进行推荐,存在数据稀疏和冷启动的问题。将社交网络信息融入推荐系统中被证明能够有效地... 随着互联网的快速发展,用户很难在大量的网络数据中找到自己感兴趣的内容,而推荐系统能帮助解决这一问题。传统的推荐系统仅依赖用户历史行为数据进行推荐,存在数据稀疏和冷启动的问题。将社交网络信息融入推荐系统中被证明能够有效地解决传统推荐系统的问题,提高了推荐质量。但是,大部分基于社交网络的推荐仅关注用户之间的单向信任关系,忽略了被信任关系和物品自身因素对推荐结果的影响,因此提出了结合物品相似性的社交信任推荐算法SocialIS。SocialIS算法考虑了用户作为信任者和被信任者时邻居用户对用户的影响,并采用Node2vec算法训练得到包含用户偏好的物品相似性向量,再使用图神经网络学习用户和物品的特征向量进行评分预测。在Epinions和Ciao数据集上进行了大量实验,采用基于误差的指标(MAE和RMSE)对所提算法的性能进行度量,并与其他算法进行对比,验证了所提算法的性能。实验结果表明,与其他算法相比,所提算法的评分预测误差更小,推荐效果更好。 展开更多
关键词 node2vec 图神经网络 信任推荐 社交网络 推荐系统
下载PDF
基于知识图谱与BERT的安全领域汉字文本纠错模型
19
作者 王子斌 张全 +3 位作者 谢聪 余沛 余泓江 李沣庭 《计算机应用》 CSCD 北大核心 2023年第S01期75-80,共6页
针对安全领域所涉及的文本中存在大量人为混淆的文字的问题,提出一种基于汉字知识图谱的BERT(Bidirectional Encoder Representation from Transformers)预训练模型,表征汉字的读音、字形、语义三个维度的特征,构建纠错算法。首先,构建... 针对安全领域所涉及的文本中存在大量人为混淆的文字的问题,提出一种基于汉字知识图谱的BERT(Bidirectional Encoder Representation from Transformers)预训练模型,表征汉字的读音、字形、语义三个维度的特征,构建纠错算法。首先,构建汉字知识图谱刻画汉字的读音、字形拆解、繁简转换、汉字与数字转换等属性和关系,并基于汉字知识图谱中的读音属性和node2vec模型训练得到汉字读音向量;其次,基于知识图谱中字形关系构建node2vec模型,得到node2vec字形向量,并结合卷积神经网络(CNN)方法训练字形向量,两者之和作为最终的字形向量;最后,基于BERT预训练模型,融合读音、字形、语义三维度的向量,并在不同维度间使用自注意力机制加权求和,发现错误字位置并选择正确的候选字。为验证所提模型的有效性,在安全领域诈骗短信数据集上,将所提模型与FASpell、SpellGCN、Soft-Masked BERT进行了对比。实验结果表明,所提模型的正确率和召回率比FASpell分别提升了24.7、21.6个百分点,比SpellGCN分别提升了22.2、13.7个百分点,比Soft-Masked BERT分别提升了20.8、32.7个百分点。可见该纠错模型能够有效识别安全领域文本的错字,在网络诈骗文本分类、要素提取等下游任务中有较好的效果。 展开更多
关键词 自然语言处理 知识图谱 汉字文本纠错 图神经网络 node2vec BERT 预训练模型
下载PDF
基于文献-关键词双模网络的热点识别方法研究——以数字人文领域为例 被引量:2
20
作者 李慧 王若婷 《情报理论与实践》 CSSCI 北大核心 2022年第11期107-114,共8页
[目的/意义]对科技文献进行热点识别研究,有助于学者们准确把握学科发展趋势和前沿问题,为科研政策和人才培养提供理论依据。[方法/过程]引入文献-关键词双模网络,设计一种考虑时间因素、文献引用关系、关键词位置顺序、关键词词频、文... [目的/意义]对科技文献进行热点识别研究,有助于学者们准确把握学科发展趋势和前沿问题,为科研政策和人才培养提供理论依据。[方法/过程]引入文献-关键词双模网络,设计一种考虑时间因素、文献引用关系、关键词位置顺序、关键词词频、文献与关键词关联关系的关键词综合影响力模型。利用Node2vec网络表示学习模型将共现网络中的节点映射为向量,采用轮廓系数对K-means、凝聚层次聚类等4种聚类算法进行评估,遴选出最优的聚类算法,结合关键词综合影响力识别热点主题。[结果/结论]选取数字人文领域的期刊文献数据进行实验,结果表明该方法可以较好地识别数字人文领域的前沿热点。 展开更多
关键词 研究热点 识别方法 双模网络 node2vec 聚类算法 数字人文
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部