AIM:To examine the activation of the Nalp3 inflammasome and its downstream targets following lipopolysaccharide(LPS) -induced stimulation in the liver. METHODS:Six-to-eight-week-old C57BL/6 chow fed mice were injected...AIM:To examine the activation of the Nalp3 inflammasome and its downstream targets following lipopolysaccharide(LPS) -induced stimulation in the liver. METHODS:Six-to-eight-week-old C57BL/6 chow fed mice were injected intraperitoneally with 0.5μg/g bodyweight LPS and sacrificed 2,4,6,18 or 24 h later. LPS-induced liver damage was confirmed by a biochemical assay to detect alanine aminotransferase(ALT) levels.To determine if LPS stimulation in the liver led to activation of the inflammasome,real-time quantitative polymerase chain reaction was used to evaluate the mRNA expression of components of the Nalp3 inflammasome.Enzyme-linked immunosorbent assays were used to determine the protein expression levels of several downstream targets of the Nalp3 inflammasome,including caspase-1 and two cytokine targets of caspase-1,interleukin(IL) -1βand IL-18. RESULTS:We found that LPS injection resulted in liver damage as indicated by elevated ALT levels.This was associated with a significant increase in both mRNA and protein levels of the proinflammatory cy-tokine tumor necrosis factor(TNF) -αin the liver,as well as increased levels of TNFs in serum.We showed that LPS stimulation led to upregulation of mRNA levels in the liver for all the receptor components of the inflammasome,including Nalp3,Nalp1,pannexin-1 and the adaptor molecule apoptosis-associated specklike,caspase recruitment domain-domain containing protein.We also found increased levels of mRNA and protein for caspase-1,a downstream target of the inflammasome.In addition,LPS challenge led to increased levels of both mRNA and protein in the liver for two cytokine targets of caspase-1,IL-1βand IL-18. Interestingly,substantial baseline expression of pre-IL1βand pre-IL-18 was found in the liver.Inflammasome and caspase-1 activation was indicated by the significant increase in the active forms of IL-1βand IL-18 after LPS stimulation. CONCLUSION:Our results show that the Nalp3 inflammasome is upregulated and activated in the liver in response to LPS stimulation.展开更多
PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory dise...PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory diseases.Although our previous lite rature mining study suggested that PANoptosis might occur in neuronal ischemia/repe rfusion injury,little experimental research has been reported on the existence of PANoptosis.In this study,we used in vivo and in vitro retinal neuronal models of ischemia/repe rfusion injury to investigate whether PAN optosis-like cell death(simultaneous occurrence of pyroptosis,apo ptosis,and necroptosis)exists in retinal neuronal ischemia/repe rfusion injury.Our results showed that ischemia/repe rfusion injury induced changes in morphological features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo.Ischemia/repe rfusion inju ry also significantly upregulated caspase-1,caspase-8,and NLRP3 expression,which are important components of the PANoptosome.These results indicate the existence of PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of regulated cell death.展开更多
Non-alcoholic fatty liver disease(NAFLD)is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes.It is most prevalent in western countries and includes a wide range of clinical ...Non-alcoholic fatty liver disease(NAFLD)is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes.It is most prevalent in western countries and includes a wide range of clinical and histopathological findings,namely from simple steatosis to steatohepatitis and fibrosis,which may lead to cirrhosis and hepatocellular cancer.The key event for the transition from steatosis to fibrosis is the activation of quiescent hepatic stellate cells(qHSC)and their differentiation to myofibroblasts.Pattern recognition receptors(PRRs),expressed by a plethora of immune cells,serve as essential components of the innate immune system whose function is to stimulate phagocytosis and mediate inflammation upon binding to them of various molecules released from damaged,apoptotic and necrotic cells.The activation of PRRs on hepatocytes,Kupffer cells,the resident macrophages of the liver,and other immune cells results in the production of proinflammatory cytokines and chemokines,as well as profibrotic factors in the liver microenvironment leading to qHSC activation and subsequent fibrogenesis.Thus,elucidation of the inflammatory pathways associated with the pathogenesis and progression of NAFLD may lead to a better understanding of its pathophysiology and new therapeutic approaches.展开更多
Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate inv...Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms.展开更多
AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Pr...AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.展开更多
Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk ...Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease(NAFLD),retinopathy,critical limb ischemia,and impaired angiogenesis.Sterile inflammation driven by high-fat diet,increased formation of reactive oxygen species,alteration of intracellular calcium level and associated release of inflammatory mediators,are the main common underlying forces in the pathophysiology of NAFLD,ischemic retinopathy,stroke,and aging brain.This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein(TXNIP)to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states.Finally,the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.展开更多
Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP...Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase- 1 into active caspase- 1, which processes the pro-infammatory cytokines pro-interleukin (IL)-1 β and pro-IL-18 into active and secreted IL-1β and I L-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-113, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1 β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (EL1SA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001 ; PM vs. control, 26.49±7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-lβ, IL-18, and NLRP3 in the muscle (for IL-1 β, DM vs. control, P 0.0012, PM vs. control, P = 0.0021 ; for IL- 18, DM vs. control, P = 0.0045, PM vs. control, P 0.0031 ; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P 0.0006). Moreover, the protein expression of NLRP3 and caspase- 1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3 inflammasome is i展开更多
Pattern recognition receptors(PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components i...Pattern recognition receptors(PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components including Toll-like receptors(TLRs), RIG-I-like receptors(RLRs), NOD-like receptors(NLRs) and C-type lectin receptors(CLRs) were surveyed in the five genomes of non-teleost ray-finned fishes(NTR) including bichir(Polypterus senegalus), American paddlefish(Polyodon spathula), alligator gar(Atractosteus spatula), spotted gar(Lepisosteus oculatus) and bowfin(Amia calva), representing all the four major basal groups of ray-finned fishes. The result indicates that all the four PRRs components have been well established in these NTR fishes. In the RLR-MAVS signal pathway, which detects intracellular RNA ligands to induce production of type I interferons(IFNs), the MAVS was lost in bichir particularly. Also, the essential genes of recognition of Lipopolysaccharide(LPS) commonly in mammals like MD2, LY96 and LBP could not be identified in NTR fishes. It is speculated that TLR4 in NTR fishes may act as a cooperator with other PRRs and has a different pathway of recognizing LPS compared with that in mammals. In addition, we provide a survey of NLR and CLR in NTR fishes. The CLRs results suggest that Group V receptors are absent in fishes and Group II and VI receptors are well established in the early vertebrate evolution. Our comprehensive research of PRRs involving NTR fishes provides a new insight into PRR evolution in primitive vertebrate.展开更多
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ...Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.展开更多
OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituen...OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings rev展开更多
Chronic spinal cord compression(CSCC)is induced by disc herniation and other reasons,leading to movement and sensation dysfunction,with a serious impact on quality of life.Spontaneous disc herniation rarely occurs in ...Chronic spinal cord compression(CSCC)is induced by disc herniation and other reasons,leading to movement and sensation dysfunction,with a serious impact on quality of life.Spontaneous disc herniation rarely occurs in rodents,and therefore establishing a chronic spinal cord compression(CSCC)animal model is of crucial importance to explore the pathogenesis and treatment of CSCC.The absence of secreted protein,acidic,and rich in cysteine(SPARC)leads to spontaneous intervertebral disc degeneration in mice,which resembles human disc degeneration.In this study,we evaluated whether SPARC-null mice may serve as an animal model for CSCC.We performed rod rotation test,pain threshold test,gait analysis,and Basso Mouse Scale score.Our results showed that the motor function of SPARC-null mice was weakened,and magnetic resonance images revealed compression at different spinal cord levels,particularly in the lumbar segments.Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes,activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype;it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway.Notably,these findings are characteristics of CSCC.Therefore,we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.展开更多
In this editorial,we comment on the article by Zhang et al.Diabetes mellitus is a chronic disorder associated with several complications like cardiomyopathy,neuropathy,and retinopathy.Diabetes prevalence is increasing...In this editorial,we comment on the article by Zhang et al.Diabetes mellitus is a chronic disorder associated with several complications like cardiomyopathy,neuropathy,and retinopathy.Diabetes prevalence is increasing worldwide.Multiple diabetes medications are prescribed based on individual patients’needs.However,the exact mechanisms by which many of these drugs exert their protective effects remain unclear.Zhang et al elucidates molecular mechanisms undelaying cardioprotective effect of the dipeptidyl peptidase-IV inhibitor,teneligliptin.Briefly,teneligliptin alleviates the activation of NOD-like receptor protein 3 inflammasome,a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling.Suppression of NOD-like receptor protein 3 inflammasome activity reduces the expression of cytokines,oxygen radicals and inflammation.These findings highlight teneligliptin as an anti-diabetic cardioprotective reagent.展开更多
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to pert...Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.展开更多
BACKGROUND Acute pancreatitis(AP)encompasses a spectrum of pancreatic inflammatory conditions,ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure.Given the challenges associated ...BACKGROUND Acute pancreatitis(AP)encompasses a spectrum of pancreatic inflammatory conditions,ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure.Given the challenges associated with obtaining human pancreatic samples,research on AP predominantly relies on animal models.In this study,we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models.AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels.METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide(LPS).Additionally,using Ptf1αto drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J-hM3/Ptf1α(cre)mice were administered Clozapine N-oxide to induce AP.Subsequently,we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus(GEO)database.RESULTS Caerulein-induced AP showed severe inflammation and edema,which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis.Compared with the control group,RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model.Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway,TLR signaling pathway,and NF-κB signaling pathway,alongside elevated levels of apoptosis-related pathways,such as apoptosis,P53 pathway,and phagosome pathway.The significantly elevated genes in the TLR and NOD-like receptor signaling pathways,as well as in the apoptosis pathway,were validated through quantitative real-time PCR experiments in animal models.Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood,w展开更多
Ulcerative colitis(UC)is a common inflammatory disease of the gastrointestinal tract.Traditional Chinese medicine(TCM)has long been used in Asia as a treatment for UC and Puerariae Radix(PR)is a reliable anti-diarrhea...Ulcerative colitis(UC)is a common inflammatory disease of the gastrointestinal tract.Traditional Chinese medicine(TCM)has long been used in Asia as a treatment for UC and Puerariae Radix(PR)is a reliable anti-diarrheal therapy.The aims of this study were to investigate the protective effect of PR using the dextran sulfate sodium salt(DSS)-induced UC model in mice and identify molecular mechanisms of PR action.The chemical constituents of PR via ultra-performance liquid chromatography/tandem mass spectrometry and identified potential PR and UC targets using a network pharmacology(NP)approach were obtained to guide mouse experiments.A total of 180 peaks were identified from PR including 48 flavonoids,46 organic acids,14 amino acids,8 phenols,8 carbohydrates,7 alkaloids,6 coumarins and 43 other constituents.NP results showed that caspase-1 was the most dysregulated of the core genes associated with UC.A PR dose of 0.136 mg/g administered to DSS treated mice reversed weight loss and decreased colon lengths found in UC mice.PR also alleviated intestinal mucosal shedding,inflammatory cell infiltration and mucin loss.PR treatment suppressed upregulation of NOD-like receptor protein 3(NLRP3),cysteinyl aspartate-specific proteases-1(caspase-1),apoptosis-associated speck-like(ASC)and gasdermin D(GSDMD)at both the protein and m RNA expression levels.The addition of a small molecule dual-specificity phosphatase inhibitor NSC 95397 inhibited the positive effects of PR.These results indicated that PR exerts a protective effect on DSS-induced colitis by inhibiting NLRP3 inflammasome activation in mice.展开更多
Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Her...Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing展开更多
Activation of the NOD-like receptor protein 3(NLRP3)inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in ...Activation of the NOD-like receptor protein 3(NLRP3)inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases(CVDs),such as diabetic cardiomyopathy,ischemia/reperfusion injury,myocardial infarction,heart failure and hypertension.Noncoding RNAs(nc RNAs)are important regulatory factors.Many Chinese medicine(CM)compounds,including their effective components,can regulate pyroptosis and exert myocardium-protecting effects.The mechanisms underlying this protection include inhibition of inflammasome protein expression,Toll-like receptor 4–NF-κB signal pathway activation,oxidative stress,endoplasmic reticulum stress(ERS),and mixed lineage kinase 3 expression and the regulation of silent information regulator 1.The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM.Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.展开更多
Background:Myeloid differentiation factor 88(MyD88)is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction.Howeve...Background:Myeloid differentiation factor 88(MyD88)is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction.However,the role of MyD88 in the pathogenesis of inflammatory bowel disease is controversial.This study aims to investigate the impact of MyD88 on intestinal inflammation and theunderlyingmechanism.Methods:MyD88 knockout(MyD88^(-/-))mice and the MyD88 inhibitor(TJ-M2010-5)were used to investigate the impact of MyD88 on acute dextran sodium sulfate(Dss)-induced colitis.Disease activity index,colon length,histological score,and inflammatory cytokines were examined to evaluate the severity of colitis.RNA transcriptome analysis and 16S rDNA sequencing were used to detect the potential mechanism.Results:In an acute DSS-colitis model,the severity of colitis was not alleviated in MyD88^(-/-)mice and TJ-M2010-5-treated mice,despite significantly lower levels of NF-kB activation being exhibited compared to control mice.Meanwhile,16S rDNA sequencing and RNA transcriptome analysis revealed a higher abundance of intestinal Proteobacteria and an up-regulation of the nucleotide oligomerization domain-like receptors(NLRs)signaling pathway in colitis mice following MyD88 suppression.Further blockade of the NLRs signaling pathway or elimination of gut microbiota with broad-spectrum antibiotics in DsS-induced colitis mice treated with TJ-M2010-5 ameiorated the disease severity,which was not improved solely by MyD88 inhibition.After treatment with broad-spectrum antibiotics,downregulation of the NLR signaling pathway was observed.Conclusion:Our study suggests that the suppression of MyD88 might be associated with unfavorable changes in the composition of gut microbiota,leading to NLR-mediated immune activation and intestinal inflammation.展开更多
The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals.The inflammasome stimulates activation of inflammatory caspases,mainly caspase-1.Caspase-1 ...The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals.The inflammasome stimulates activation of inflammatory caspases,mainly caspase-1.Caspase-1 activation is responsible for processing and secretion of IL-1βand IL-18 as well as for inducing macrophage pyroptotic death.Assembly of the large cytoplasmic inflammasome complex is thought to be mediated by members of NOD-like receptor(NLR)family.While functions of most of the NLR proteins remain to be defined,several NLR proteins including NLRC4 have been shown to assemble distinct inflammasome complexes.These inflammasome pathways,particularly the NLRC4 inflammasome,play a critical role in sensing and restricting diverse types of bacterial infections.Here we review recent advances in defining the exact bacterial ligands and the ligand-binding receptors involved in NLRC4 inflammasome activation.Implications of the discovery of the NAIP family of inflammasome receptors for bacterial flagellin and type III secretion apparatus on future inflammasome and bacterial infection studies are also discussed.展开更多
文摘AIM:To examine the activation of the Nalp3 inflammasome and its downstream targets following lipopolysaccharide(LPS) -induced stimulation in the liver. METHODS:Six-to-eight-week-old C57BL/6 chow fed mice were injected intraperitoneally with 0.5μg/g bodyweight LPS and sacrificed 2,4,6,18 or 24 h later. LPS-induced liver damage was confirmed by a biochemical assay to detect alanine aminotransferase(ALT) levels.To determine if LPS stimulation in the liver led to activation of the inflammasome,real-time quantitative polymerase chain reaction was used to evaluate the mRNA expression of components of the Nalp3 inflammasome.Enzyme-linked immunosorbent assays were used to determine the protein expression levels of several downstream targets of the Nalp3 inflammasome,including caspase-1 and two cytokine targets of caspase-1,interleukin(IL) -1βand IL-18. RESULTS:We found that LPS injection resulted in liver damage as indicated by elevated ALT levels.This was associated with a significant increase in both mRNA and protein levels of the proinflammatory cy-tokine tumor necrosis factor(TNF) -αin the liver,as well as increased levels of TNFs in serum.We showed that LPS stimulation led to upregulation of mRNA levels in the liver for all the receptor components of the inflammasome,including Nalp3,Nalp1,pannexin-1 and the adaptor molecule apoptosis-associated specklike,caspase recruitment domain-domain containing protein.We also found increased levels of mRNA and protein for caspase-1,a downstream target of the inflammasome.In addition,LPS challenge led to increased levels of both mRNA and protein in the liver for two cytokine targets of caspase-1,IL-1βand IL-18. Interestingly,substantial baseline expression of pre-IL1βand pre-IL-18 was found in the liver.Inflammasome and caspase-1 activation was indicated by the significant increase in the active forms of IL-1βand IL-18 after LPS stimulation. CONCLUSION:Our results show that the Nalp3 inflammasome is upregulated and activated in the liver in response to LPS stimulation.
基金supported by the National Natural Science Foundation of China,Nos.81772134,81971891,82172196,81571939(ail to KX)the Key Laboratory of Emergency and Trauma(Hainan Medical University)of Ministry of Education,No.KLET-202108(to KX)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University of China,No.2020zzts218(to WTY)Hunan Provincial Innovation Foundation for Postgraduate of China,No.CX20200116(to WTY)。
文摘PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory diseases.Although our previous lite rature mining study suggested that PANoptosis might occur in neuronal ischemia/repe rfusion injury,little experimental research has been reported on the existence of PANoptosis.In this study,we used in vivo and in vitro retinal neuronal models of ischemia/repe rfusion injury to investigate whether PAN optosis-like cell death(simultaneous occurrence of pyroptosis,apo ptosis,and necroptosis)exists in retinal neuronal ischemia/repe rfusion injury.Our results showed that ischemia/repe rfusion injury induced changes in morphological features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo.Ischemia/repe rfusion inju ry also significantly upregulated caspase-1,caspase-8,and NLRP3 expression,which are important components of the PANoptosome.These results indicate the existence of PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of regulated cell death.
基金Supported by the Deutsche Forschungsgemeinschaft,No.CH 1862/2-1 and No.CH 1862/3-1the Hellenic Association for the Study of the Liver.
文摘Non-alcoholic fatty liver disease(NAFLD)is characterized by excessive storage of fatty acids in the form of triglycerides in hepatocytes.It is most prevalent in western countries and includes a wide range of clinical and histopathological findings,namely from simple steatosis to steatohepatitis and fibrosis,which may lead to cirrhosis and hepatocellular cancer.The key event for the transition from steatosis to fibrosis is the activation of quiescent hepatic stellate cells(qHSC)and their differentiation to myofibroblasts.Pattern recognition receptors(PRRs),expressed by a plethora of immune cells,serve as essential components of the innate immune system whose function is to stimulate phagocytosis and mediate inflammation upon binding to them of various molecules released from damaged,apoptotic and necrotic cells.The activation of PRRs on hepatocytes,Kupffer cells,the resident macrophages of the liver,and other immune cells results in the production of proinflammatory cytokines and chemokines,as well as profibrotic factors in the liver microenvironment leading to qHSC activation and subsequent fibrogenesis.Thus,elucidation of the inflammatory pathways associated with the pathogenesis and progression of NAFLD may lead to a better understanding of its pathophysiology and new therapeutic approaches.
基金ACKNOWLEDGEMENTS TJ is supported by the Fundamental Research Funds for the Central Universities and the 100 Talents Program of the Chinese Academy of Sciences. YIL is supported by the China Postdoctoral Science Foundation. We express our appreciation to Tsan Sam Xiao at Case Western Reserve University and Bin Lin at the National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA for proofreading and suggestions.
文摘Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms.
基金Supported by The National Natural Science Foundation of ChinaNO.81170374 and NO.81470842 to Hua J
文摘AIM: To investigate the effect of different dietary fatty acids on hepatic inflammasome activation.METHODS: Wild-type C57BL/6 mice were fed either a high-fat diet or polyunsaturated fatty acid (PUFA)-enriched diet. Primary hepatocytes were treated with either saturated fatty acids (SFAs) or PUFAs as well as combined with lipopolysaccharide (LPS). The expression of NOD-like receptor protein 3 (NLRP3) inflammasome, peroxisome proliferator-activated receptor-γ and nuclear factor-kappa B (NF-κB) was determined by real-time PCR and Western blot. The activity of Caspase-1 and interleukine-1β production were measured.RESULTS: High-fat diet-induced hepatic steatosis was sufficient to induce and activate hepatic NLRP3 inflammasome. SFA palmitic acid (PA) directly activated NLRP3 inflammasome and increased sensitization to LPS-induced inflammasome activation in hepatocytes. In contrast, PUFA docosahexaenoic acid (DHA) had the potential to inhibit NLRP3 inflammasome expression in hepatocytes and partly abolished LPS-induced NLRP3 inflammasome activation. Furthermore, a high-fat diet increased but PUFA-enriched diet decreased sensitization to LPS-induced hepatic NLRP3 inflammasome activation in vivo. Moreover, PA increased but DHA decreased phosphorylated NF-κB p65 protein expression in hepatocytes.CONCLUSION: Hepatic NLRP3 inflammasome activation played an important role in the development of non-alcoholic fatty liver disease. Dietary SFAs and PUFAs oppositely regulated the activity of NLRP3 inflammasome through direct activation or inhibition of NF-κB.
文摘Tissue and systemic inflammation have been the main culprit behind the cellular response to multiple insults and maintaining homeostasis.Obesity is an independent disease state that has been reported as a common risk factor for multiple metabolic and microvascular diseases including nonalcoholic fatty liver disease(NAFLD),retinopathy,critical limb ischemia,and impaired angiogenesis.Sterile inflammation driven by high-fat diet,increased formation of reactive oxygen species,alteration of intracellular calcium level and associated release of inflammatory mediators,are the main common underlying forces in the pathophysiology of NAFLD,ischemic retinopathy,stroke,and aging brain.This work aims to examine the contribution of the pro-oxidative and pro-inflammatory thioredoxin interacting protein(TXNIP)to the expression and activation of NLRP3-inflammasome resulting in initiation or exacerbation of sterile inflammation in these disease states.Finally,the potential for TXNIP as a therapeutic target and whether TXNIP expression can be modulated using natural antioxidants or repurposing other drugs will be discussed.
基金This work was supported by a grant from the National Natural Science Foundation of China (No. 81271399).
文摘Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase- 1 into active caspase- 1, which processes the pro-infammatory cytokines pro-interleukin (IL)-1 β and pro-IL-18 into active and secreted IL-1β and I L-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-113, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1 β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (EL1SA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001 ; PM vs. control, 26.49±7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P 〈 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-lβ, IL-18, and NLRP3 in the muscle (for IL-1 β, DM vs. control, P 0.0012, PM vs. control, P = 0.0021 ; for IL- 18, DM vs. control, P = 0.0045, PM vs. control, P 0.0031 ; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P 0.0006). Moreover, the protein expression of NLRP3 and caspase- 1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3 inflammasome is i
基金supported by the National Natural Science Foundation of China(31372190)
文摘Pattern recognition receptors(PRRs) play important roles in innate immunity system and trigger the specific pathogen recognition by detecting the pathogen-associated molecular patterns. The main four PRRs components including Toll-like receptors(TLRs), RIG-I-like receptors(RLRs), NOD-like receptors(NLRs) and C-type lectin receptors(CLRs) were surveyed in the five genomes of non-teleost ray-finned fishes(NTR) including bichir(Polypterus senegalus), American paddlefish(Polyodon spathula), alligator gar(Atractosteus spatula), spotted gar(Lepisosteus oculatus) and bowfin(Amia calva), representing all the four major basal groups of ray-finned fishes. The result indicates that all the four PRRs components have been well established in these NTR fishes. In the RLR-MAVS signal pathway, which detects intracellular RNA ligands to induce production of type I interferons(IFNs), the MAVS was lost in bichir particularly. Also, the essential genes of recognition of Lipopolysaccharide(LPS) commonly in mammals like MD2, LY96 and LBP could not be identified in NTR fishes. It is speculated that TLR4 in NTR fishes may act as a cooperator with other PRRs and has a different pathway of recognizing LPS compared with that in mammals. In addition, we provide a survey of NLR and CLR in NTR fishes. The CLRs results suggest that Group V receptors are absent in fishes and Group II and VI receptors are well established in the early vertebrate evolution. Our comprehensive research of PRRs involving NTR fishes provides a new insight into PRR evolution in primitive vertebrate.
基金supported by the National Natural Science Foundation of China,No.81971246 (to TM)Opening Foundation of Jiangsu Key Laboratory of Neurodegeneration,Nanjing Medical University,No.KF202204 (to LZ and SF)。
文摘Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
基金Natural Science Foundation Project of Chongqing Municipality:a Metabolome-based Study on the Protective Mechanism of Yemazhui(Herba Eupatorii Lindleyani)Sesquiterpene Lactones Against Acute Lung Injury(No.cstc2021jcyj-msxmX0365)Science and Technology Research Program of Chongqing Municipal Education Commission:a Cytokine Storm-based Study of the Protective Effect of Yemazhui(Herba Eupatorii Lindleyani)Extract Intervention on COVID-19 Lung Injury(No.KJZD-K202215101)。
文摘OBJECTIVE:To investigate the impact of Yemazhui(Herba Eupatorii Lindleyani,HEL)against lipopolysaccharide(LPS)-induced acute lung injury(ALI)and explore its underlying mechanism in vivo.METHODS:The chemical constituents of HEL were analyzed by ultra-high performance liquid chromatographyquadrupole time-of-flight mass spectrometry method.Then,HEL was found to suppress LPS-induced ALI in vivo.Six-week-old male Sprague-Dawley rats were randomly divided into 6 groups:control,LPS,Dexamethasone(Dex),HEL low dose 6 g/kg(HEL-L),HEL medium dose 18 g/kg(HEL-M)and HEL high dose 54 g/kg(HEL-H)groups.The model rats were intratracheally injected with 3 mg/kg LPS to establish an ALI model.Leukocyte counts,lung wet/dry weight ratio,as well as myeloperoxidase(MPO)activity were determined followed by the detection with hematoxylin and eosin staining,enzyme linked immunosorbent assay,quantitative real time polymerase chain reaction,western blotting,immunohistochemistry,and immunofluorescence.Besides,to explore the effect of HEL on ALI-mediated intestinal flora,we performed 16s rRNA sequencing analysis of intestinal contents.RESULTS:HEL attenuated LPS-induced inflammation in lung tissue and intestinal flora disturbance.Mechanism study indicated that HEL suppressed the lung coefficient and wet/dry weight ratio of LPS-induced ALI in rats,inhibited leukocytes exudation and MPO activity,and improved the pathological injury of lung tissue.In addition,HEL reduced the expression of tumor necrosis factoralpha,interleukin-1beta(IL-1β)and interleukin-6(IL-6)in bronchoalveolar lavage fluid and serum,and inhibited nuclear displacement of nuclear factor kappa-B p65(NF-κBp65).And 18 g/kg HEL also reduced the expression levels of toll-like receptor 4(TLR4),myeloid differentiation factor 88,NF-κBp65,phosphorylated inhibitor kappa B alpha(phospho-IκBα),nod-like receptor family pyrin domain-containing 3 protein(NLRP3),IL-1β,and interleukin-18(IL-18)in lung tissue,and regulated intestinal flora disturbance.CONCLUSIONS:In summary,our findings rev
基金supported by the National Natural Science Foundation of China,Nos.82074454(to XJC),82174409(to MY),81930116(to YJW),81873317(to XJC)the National Key R&D Program of China,No.2018YFC1704300(to YJW)the Natural Science Foundation of Shanghai,No.20ZR1459000(to MY)。
文摘Chronic spinal cord compression(CSCC)is induced by disc herniation and other reasons,leading to movement and sensation dysfunction,with a serious impact on quality of life.Spontaneous disc herniation rarely occurs in rodents,and therefore establishing a chronic spinal cord compression(CSCC)animal model is of crucial importance to explore the pathogenesis and treatment of CSCC.The absence of secreted protein,acidic,and rich in cysteine(SPARC)leads to spontaneous intervertebral disc degeneration in mice,which resembles human disc degeneration.In this study,we evaluated whether SPARC-null mice may serve as an animal model for CSCC.We performed rod rotation test,pain threshold test,gait analysis,and Basso Mouse Scale score.Our results showed that the motor function of SPARC-null mice was weakened,and magnetic resonance images revealed compression at different spinal cord levels,particularly in the lumbar segments.Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes,activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype;it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway.Notably,these findings are characteristics of CSCC.Therefore,we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.
基金Supported by the Kuwait Foundation for the Advancement of Sciences and Dasman Diabetes Institute,No.RACB-2021-007.
文摘In this editorial,we comment on the article by Zhang et al.Diabetes mellitus is a chronic disorder associated with several complications like cardiomyopathy,neuropathy,and retinopathy.Diabetes prevalence is increasing worldwide.Multiple diabetes medications are prescribed based on individual patients’needs.However,the exact mechanisms by which many of these drugs exert their protective effects remain unclear.Zhang et al elucidates molecular mechanisms undelaying cardioprotective effect of the dipeptidyl peptidase-IV inhibitor,teneligliptin.Briefly,teneligliptin alleviates the activation of NOD-like receptor protein 3 inflammasome,a multiprotein complex that plays a pivotal role in regulating the innate immune system and inflammatory signaling.Suppression of NOD-like receptor protein 3 inflammasome activity reduces the expression of cytokines,oxygen radicals and inflammation.These findings highlight teneligliptin as an anti-diabetic cardioprotective reagent.
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.
基金supported by the State Key Program of National Natural Science of China (81930110)Military Logistics Research Project on Health Special Project (23BJZ33)the Key Project at Central Government Level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302)。
文摘Background: Idiosyncratic drug-induced liver injury(IDILI) is a serious side effect of drugs, Epimedii Folium(EF) is unequivocally implicated in idiosyncratic liver injury onset, potentially due to its ability to perturb the NOD-like receptor family pyrin domain containing 3(NLRP3) inflammasome. Fructus Ligustri Lucidi(FLL), a frequently used medicinal combination with EF, has not yet been investigated for its ability to ameliorate EF-associated hepatotoxicity. Aims and Objectives: Study on the mechanism of compatibility of FLL to alleviate liver injury caused by EF. Materials and Methods: Western blot was used to determine the expression of related proteins, ELISA was used to detect the secretion of related inflammatory factors IL-1β, IL-18, IL-6 and TNF-α, liver injury indexes were detected and liver pathological tissue staining was used to evaluate the liver injury. Results: Our results demonstrated that EF exerted a particular augmenting effect on the stimulation of the NLRP3 inflammasome mediated by nigericin or ATP, whereas FLL suppressed the NLRP3 inflammasome stimulation. Furthermore, an equal EF to FLL ratio significantly reduced the stimulatory effects of EF. Moreover, EF has the potential to induce hepatic injury and augment pro-inflammatory cytokine synthesis in rats subjected to LPS. However, when combined with FLL, the detrimental effects of EF were mitigated. Conclusions: FLL possesses the capacity to attenuate EF-associated hepatotoxicity by suppressing EF-triggered NLRP3 inflammasome activation. Thus, FLL holds promise for improving the clinical safety profile of EF, shedding light on the potential of compatibility and detoxification theories in traditional Chinese medicine.
基金Supported by National Natural Science Foundation of China,No.82260133 and No.82370661the Academic and Technical Leader of major disciplines in Jiangxi Province,No.20225BCJ23021+2 种基金the Jiangxi Medicine Academy of Nutrition and Health Management,No.2022-PYXM-01the Natural Science Foundation of Jiangxi Province,No.20224ACB216004the Technological Innovation Team Cultivation Project of the First Affiliated Hospital of Nanchang University,No.YFYKCTDPY202202.
文摘BACKGROUND Acute pancreatitis(AP)encompasses a spectrum of pancreatic inflammatory conditions,ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure.Given the challenges associated with obtaining human pancreatic samples,research on AP predominantly relies on animal models.In this study,we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models.AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels.METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide(LPS).Additionally,using Ptf1αto drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J-hM3/Ptf1α(cre)mice were administered Clozapine N-oxide to induce AP.Subsequently,we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus(GEO)database.RESULTS Caerulein-induced AP showed severe inflammation and edema,which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis.Compared with the control group,RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model.Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway,TLR signaling pathway,and NF-κB signaling pathway,alongside elevated levels of apoptosis-related pathways,such as apoptosis,P53 pathway,and phagosome pathway.The significantly elevated genes in the TLR and NOD-like receptor signaling pathways,as well as in the apoptosis pathway,were validated through quantitative real-time PCR experiments in animal models.Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood,w
基金financially supported by the National Natural Science Foundation of China(32172897)Central Significant Changes in the Project at the Corresponding Level(Valuable Resources Capacity-Building for Sustainable Utilization of Traditional Chinese Medicine Program)(2060302)Chinese Herbal Medicine Industry Innovation Team of Shandong Province Agricultural Technology System(SDAIT-20-06)。
文摘Ulcerative colitis(UC)is a common inflammatory disease of the gastrointestinal tract.Traditional Chinese medicine(TCM)has long been used in Asia as a treatment for UC and Puerariae Radix(PR)is a reliable anti-diarrheal therapy.The aims of this study were to investigate the protective effect of PR using the dextran sulfate sodium salt(DSS)-induced UC model in mice and identify molecular mechanisms of PR action.The chemical constituents of PR via ultra-performance liquid chromatography/tandem mass spectrometry and identified potential PR and UC targets using a network pharmacology(NP)approach were obtained to guide mouse experiments.A total of 180 peaks were identified from PR including 48 flavonoids,46 organic acids,14 amino acids,8 phenols,8 carbohydrates,7 alkaloids,6 coumarins and 43 other constituents.NP results showed that caspase-1 was the most dysregulated of the core genes associated with UC.A PR dose of 0.136 mg/g administered to DSS treated mice reversed weight loss and decreased colon lengths found in UC mice.PR also alleviated intestinal mucosal shedding,inflammatory cell infiltration and mucin loss.PR treatment suppressed upregulation of NOD-like receptor protein 3(NLRP3),cysteinyl aspartate-specific proteases-1(caspase-1),apoptosis-associated speck-like(ASC)and gasdermin D(GSDMD)at both the protein and m RNA expression levels.The addition of a small molecule dual-specificity phosphatase inhibitor NSC 95397 inhibited the positive effects of PR.These results indicated that PR exerts a protective effect on DSS-induced colitis by inhibiting NLRP3 inflammasome activation in mice.
基金supported by the National Key Research and Development Program of China,No.2022YFC2402701(to WC)Key International(Regional)Joint Research Program of the National Natural Science Foundation of China,No.81820108009(to SY)+5 种基金the National Natural Science Foundation of China,Nos.81970890(to WC)and 82371148(to WG)Fujian Provincial Healthcare Young and Middle-aged Backbone Talent Training Project,No.2023GGA035(to XC)Spring City Planthe High-level Talent Promotion and Training Project of Kunming,No.2022SCP001(to SY)the Natural Science Foundation of Hainan Province of China,No.824MS052(to XS)the Sixth Medical Center of Chinese PLA General Hospital Innovation Cultivation,No.CXPY202116(to LX)。
文摘Noise-induced hearing loss is the primary non-genetic factor contributing to auditory dysfunction.However,there are currently no effective pharmacological interventions for patients with noise-induced hearing loss.Here,we present evidence suggesting that the lysine-specific demethylase 1 inhibitor–tranylcypromine is an otoprotective agent that could be used to treat noise-induced hearing loss,and elucidate its underlying regulatory mechanisms.We established a mouse model of permanent threshold shift hearing loss by exposing the mice to white broadband noise at a sound pressure level of 120 d B for 4 hours.We found that tranylcypromine treatment led to the upregulation of Sestrin2(SESN2)and activation of the autophagy markers light chain 3B and lysosome-associated membrane glycoprotein 1 in the cochleae of mice treated with tranylcypromine.The noise exposure group treated with tranylcypromine showed significantly lower average auditory brainstem response hearing thresholds at click,4,8,and 16 k Hz frequencies compared with the noise exposure group treated with saline.These findings indicate that tranylcypromine treatment resulted in increased SESN2,light chain 3B,and lysosome-associated membrane glycoprotein 1 expression after noise exposure,leading to a reduction in levels of 4-hydroxynonenal and cleaved caspase-3,thereby reducing noise-induced hair cell loss.Additionally,immunoblot analysis demonstrated that treatment with tranylcypromine upregulated SESN2 expression via the autophagy pathway.Tranylcypromine treatment also reduced the production of NOD-like receptor family pyrin domaincontaining 3(NLRP3)production.In conclusion,our results showed that tranylcypromine treatment ameliorated cochlear inflammation by promoting the expression of SESN2,which induced autophagy,thereby restricting NLRP3-related inflammasome signaling,alleviating cochlear hair cell loss,and protecting hearing function.These findings suggest that inhibiting lysine-specific demethylase 1 is a potential therapeutic strategy for preventing
基金Supported by the Scientific Research Project of Hebei Provincial Administration of Traditional Chinese Medicine (No.2020149)。
文摘Activation of the NOD-like receptor protein 3(NLRP3)inflammasome signaling pathway is an important mechanism underlying myocardial pyroptosis and plays an important role in inflammatory damage to myocardial tissue in patients with cardiovascular diseases(CVDs),such as diabetic cardiomyopathy,ischemia/reperfusion injury,myocardial infarction,heart failure and hypertension.Noncoding RNAs(nc RNAs)are important regulatory factors.Many Chinese medicine(CM)compounds,including their effective components,can regulate pyroptosis and exert myocardium-protecting effects.The mechanisms underlying this protection include inhibition of inflammasome protein expression,Toll-like receptor 4–NF-κB signal pathway activation,oxidative stress,endoplasmic reticulum stress(ERS),and mixed lineage kinase 3 expression and the regulation of silent information regulator 1.The NLRP3 protein is an important regulatory target for CVD prevention and treatment with CM.Exploring the effects of the interventions mediated by CM and the related mechanisms provides new ideas and perspectives for CVD prevention and treatment.
基金the National Natural Science Foundation of China(Grant Nos.81873556 and 82170546 to FX)China Crohn's&Colitis Foundation(Grant No.CCCF-QF-2022B67-3 to FX)the Tongji Hospital Clinical Research Flagship Program(Grant No.2019CR209 to DT).We thank Prof.Ping Zhou for providing the inhibitor of MyD88 TJ-M2010-5(TJ5).
文摘Background:Myeloid differentiation factor 88(MyD88)is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction.However,the role of MyD88 in the pathogenesis of inflammatory bowel disease is controversial.This study aims to investigate the impact of MyD88 on intestinal inflammation and theunderlyingmechanism.Methods:MyD88 knockout(MyD88^(-/-))mice and the MyD88 inhibitor(TJ-M2010-5)were used to investigate the impact of MyD88 on acute dextran sodium sulfate(Dss)-induced colitis.Disease activity index,colon length,histological score,and inflammatory cytokines were examined to evaluate the severity of colitis.RNA transcriptome analysis and 16S rDNA sequencing were used to detect the potential mechanism.Results:In an acute DSS-colitis model,the severity of colitis was not alleviated in MyD88^(-/-)mice and TJ-M2010-5-treated mice,despite significantly lower levels of NF-kB activation being exhibited compared to control mice.Meanwhile,16S rDNA sequencing and RNA transcriptome analysis revealed a higher abundance of intestinal Proteobacteria and an up-regulation of the nucleotide oligomerization domain-like receptors(NLRs)signaling pathway in colitis mice following MyD88 suppression.Further blockade of the NLRs signaling pathway or elimination of gut microbiota with broad-spectrum antibiotics in DsS-induced colitis mice treated with TJ-M2010-5 ameiorated the disease severity,which was not improved solely by MyD88 inhibition.After treatment with broad-spectrum antibiotics,downregulation of the NLR signaling pathway was observed.Conclusion:Our study suggests that the suppression of MyD88 might be associated with unfavorable changes in the composition of gut microbiota,leading to NLR-mediated immune activation and intestinal inflammation.
基金by the National Basic Research Program of China(973 Program)(Grant Nos.2010CB835400 and 2012CB518700)Howard Hughes Medical Institute,USA.
文摘The inflammasome is an emerging new pathway in innate immune defense against microbial infection or endogenous danger signals.The inflammasome stimulates activation of inflammatory caspases,mainly caspase-1.Caspase-1 activation is responsible for processing and secretion of IL-1βand IL-18 as well as for inducing macrophage pyroptotic death.Assembly of the large cytoplasmic inflammasome complex is thought to be mediated by members of NOD-like receptor(NLR)family.While functions of most of the NLR proteins remain to be defined,several NLR proteins including NLRC4 have been shown to assemble distinct inflammasome complexes.These inflammasome pathways,particularly the NLRC4 inflammasome,play a critical role in sensing and restricting diverse types of bacterial infections.Here we review recent advances in defining the exact bacterial ligands and the ligand-binding receptors involved in NLRC4 inflammasome activation.Implications of the discovery of the NAIP family of inflammasome receptors for bacterial flagellin and type III secretion apparatus on future inflammasome and bacterial infection studies are also discussed.