A hybrid no-core fiber(NCF)–graded index multimode fiber(GIMF) structure is used as a saturable absorber(SA)for mode-locked laser operation. Such an SA supports various types of soliton outputs. By changing the cavit...A hybrid no-core fiber(NCF)–graded index multimode fiber(GIMF) structure is used as a saturable absorber(SA)for mode-locked laser operation. Such an SA supports various types of soliton outputs. By changing the cavity parameters, not only the spatiotemporal mode-locking states with a stable single pulse but also tightly and loosely bound solitons are generated. Single 35.5 pJ solitons centered at 1568.5 nm have a 4 nm spectral full-width at half-maximum and an 818 fs temporal duration. Tightly bound soliton pairs with continuously tunable wavelength from 1567.48 nm to 1576.20 nm, featured with an ~700 fs pulse train with a separation of 2.07 ps, have been observed by stretching the NCF-GIMF structured device. Meanwhile, several different pulse separations from 37.57 ps to 56.46 ps of loosely bound solitons have also been realized. The results provide help in understanding the nonlinear dynamics in fiber lasers.展开更多
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a...An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.展开更多
A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-c...A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-core fiber(NCF)was coated with a silver(Ag) film, and the other part was coated with a silver/polydimethylsiloxane(Ag/PDMS) composite film to stimulate the SPR effect. Due to the two heterogeneous films, two dips appeared in the transmission spectrum and were used to achieve the dual-parameter measurements. The experimental results showed that the RI sensitivity reached 2121.43 nm/RIU and 0 nm/RIU, while the temperature sensitivity reached-0.32 nm/℃ and-2.21 nm/℃ for the two dips,respectively. Based on the obtained transfer matrix, the measurements of RI and temperature could be demodulated. This designed sensor showed the merits of simple structure, easy to implement, and high sensitivity, demonstrating application prospects in dual-parameter monitoring.展开更多
Fabrication method and device of ultra-small gradient-index (GRIN) fiber probe were investigated in order to explore the development of ultra-small probes for optical coherence tomography (OCT) imaging. The beam- ...Fabrication method and device of ultra-small gradient-index (GRIN) fiber probe were investigated in order to explore the development of ultra-small probes for optical coherence tomography (OCT) imaging. The beam- expanding effect of no-core fiber (NCF) and the focusing properties of the GRIN fiber lens were analyzed based on the model of GRIN fiber probe consisting of single-mode fiber (SMF), NCF and GRIN fiber lens. A stereo micro- scope based system was developed to fabricate the GRIN fiber probe. A fiber fusion splicer and an ultrasonic cleaver were used to weld and cut the fiber respectively. A con- focal microscopy was used to measure the dimensions of probe components. The results show that the sizes of probe components developed are at the level of millimeter. Therefore, the proposed experimental system meets the fabrication requirements of an ultra-small self-focusing GRIN fiber probe. This shows that this fabrication device and method can be employed in the fabrication of ultra- small self-focusing GRIN fiber probe and applied in the study of miniaturized optical probes and OCT systems.展开更多
A novel fiber temperature sensor based on multimode interference theory is proposed and experimentally demonstrated.The sensing head is formed by a fiber bragg grating(FBG)connected with single-mode-no core-single-mod...A novel fiber temperature sensor based on multimode interference theory is proposed and experimentally demonstrated.The sensing head is formed by a fiber bragg grating(FBG)connected with single-mode-no core-single-mode fiber(SNS)fiber structure which consists of two sections of single mode fiber and no-core fiber.Using such a structure,not only the reflective measurement can be realized,but also the need for a gold-plated film can be avoided at the end of the fiber to enhance the reflected light signal.More importantly,the sensitivity is increased by 4 times as compared with the conventional FBG temperature sensor according to the experimental results,and it also provides the development space for multi-parameters monitoring.展开更多
A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) comp...A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.展开更多
文摘A hybrid no-core fiber(NCF)–graded index multimode fiber(GIMF) structure is used as a saturable absorber(SA)for mode-locked laser operation. Such an SA supports various types of soliton outputs. By changing the cavity parameters, not only the spatiotemporal mode-locking states with a stable single pulse but also tightly and loosely bound solitons are generated. Single 35.5 pJ solitons centered at 1568.5 nm have a 4 nm spectral full-width at half-maximum and an 818 fs temporal duration. Tightly bound soliton pairs with continuously tunable wavelength from 1567.48 nm to 1576.20 nm, featured with an ~700 fs pulse train with a separation of 2.07 ps, have been observed by stretching the NCF-GIMF structured device. Meanwhile, several different pulse separations from 37.57 ps to 56.46 ps of loosely bound solitons have also been realized. The results provide help in understanding the nonlinear dynamics in fiber lasers.
基金Project supported by the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16100)the National Natural Science Foundation of China(Grant No.61107035)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ03091502)the National Basic Research Program of China(Grant Nos.2010CB327802 and 2010CB327806)
文摘An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.
基金the Natural Science Foundation of Hebei Province, China (Grant No. F2021203112)the National Natural Science Foundation of China (Grant No. 12074331)+1 种基金the National Key Research and Development Program of China (Grant No. 2019YFB2204001)Basic Scientific Research Funds for universities in Hebei Province, China (Grant No. JQN2021019)。
文摘A compact surface plasmon resonance(SPR) fiber optic sensor, being utilized to simultaneously measure refractive index(RI) and temperature, is proposed and experimentally demonstrated in this paper. One part of a no-core fiber(NCF)was coated with a silver(Ag) film, and the other part was coated with a silver/polydimethylsiloxane(Ag/PDMS) composite film to stimulate the SPR effect. Due to the two heterogeneous films, two dips appeared in the transmission spectrum and were used to achieve the dual-parameter measurements. The experimental results showed that the RI sensitivity reached 2121.43 nm/RIU and 0 nm/RIU, while the temperature sensitivity reached-0.32 nm/℃ and-2.21 nm/℃ for the two dips,respectively. Based on the obtained transfer matrix, the measurements of RI and temperature could be demodulated. This designed sensor showed the merits of simple structure, easy to implement, and high sensitivity, demonstrating application prospects in dual-parameter monitoring.
基金supported by the National Natural Science Foundation of China(Grant No.41104065)the Dawn Planning Foundation of Shanghai Municipal Education Commission (Grant No.12CG047)by the Scientific Research Innovation Project of Shanghai Municipal Education Commission(Grant No. 13YZ022)
文摘Fabrication method and device of ultra-small gradient-index (GRIN) fiber probe were investigated in order to explore the development of ultra-small probes for optical coherence tomography (OCT) imaging. The beam- expanding effect of no-core fiber (NCF) and the focusing properties of the GRIN fiber lens were analyzed based on the model of GRIN fiber probe consisting of single-mode fiber (SMF), NCF and GRIN fiber lens. A stereo micro- scope based system was developed to fabricate the GRIN fiber probe. A fiber fusion splicer and an ultrasonic cleaver were used to weld and cut the fiber respectively. A con- focal microscopy was used to measure the dimensions of probe components. The results show that the sizes of probe components developed are at the level of millimeter. Therefore, the proposed experimental system meets the fabrication requirements of an ultra-small self-focusing GRIN fiber probe. This shows that this fabrication device and method can be employed in the fabrication of ultra- small self-focusing GRIN fiber probe and applied in the study of miniaturized optical probes and OCT systems.
基金supported by the National Natural Science Foundation of China(No.U1537102)the Fund of Aeronautics Science(No.20152852036,20170252004)+2 种基金the Fundamental Research Funds for the Central Universities(NS2016004)the Shanghai Academy of Spaceflight Technology(No.SAST2015062)the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No.MCMS-0516K01)
文摘A novel fiber temperature sensor based on multimode interference theory is proposed and experimentally demonstrated.The sensing head is formed by a fiber bragg grating(FBG)connected with single-mode-no core-single-mode fiber(SNS)fiber structure which consists of two sections of single mode fiber and no-core fiber.Using such a structure,not only the reflective measurement can be realized,but also the need for a gold-plated film can be avoided at the end of the fiber to enhance the reflected light signal.More importantly,the sensitivity is increased by 4 times as compared with the conventional FBG temperature sensor according to the experimental results,and it also provides the development space for multi-parameters monitoring.
基金supported by the National Natural Science Foundation of China (No.61377075)the Training Program for Leading Talents of Universities in Tianjin。
文摘A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.