Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrif...Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrification characteristics under conditions of low ammonia concentrations. The results showed that nitrification was prone to complete with increasing pH, DO and temperature. Sensitivity analysis demonstrated the effects of temperature and pH on nitrification feature of suspended bacteria were slightly greater than those of immobilized nitrifying bacteria. Immobilized cells could achieve complete nitrification at low ammonia concentrations when DO was sufficient. Continuous experiments were carried out to discuss the removal of ammonia nitrogen from synthetic micropollute source water with the ammonia concentration of about 1mg/L using immobilized nitrifying bacteria pellets in an up-flow inner circulation reactor under different hydraulic retention times (HRT). The continuous removal rate remains above 80% even under HRT 30 min. The results verified that the waterborne polyurethane immobilized nitrifying bacteria pellets had great potential applications for micro-pollution source water treatment.展开更多
DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and e...DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.展开更多
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal perc...The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.展开更多
The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anamm...The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2 43 h. Under the condition that HRT w as 6 39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97 17% and 100 00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100 83 mmol/(L·d) and 98 95 mmol/(L·d). The performance of Anammox reactor was efficient and stable.展开更多
The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as eithe...The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.展开更多
The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electro...The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the nitrification rate decreased with an increasing organic concentration. However, the effect became weak when the carbon concentration reached a sufficiently high level. Denitrification was detected after organic carbon was added. The 12 h ammonium removal rate ranged from 85% to 30% at C/N = 0.5, 1, 2, 4, 8, and 16, as compared to the control (C/N = 0). The loss of nitrogen after 24 h at C/N = 0.5, 1, 2, 4, 8, and 16 was 31%, 18%, 24%, 65%, 59%, and 62%, respectively. The sequence analysis of 16S rRNA gene fragments revealed that the dominant populations changed from nitrifying bacteria (Nitrosomonas europaea and Nitrobacter sp.) to denitrifying bacteria (Pseudomonas sp., Acidovorax sp. and Comamonas sp.) with an increasing C/N ratio. Although at high C/N ratio the denitrifying bacteria were the dominant populations, nitrifying bacteria grew simultaneously. Consequently, nitrification process coexisted with denitrification.展开更多
In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of micr...In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.展开更多
In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost...In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost.The effects of inoculation on physical and chemical parameters,ammonia and hydrogen sulfide release,nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied.The results showed that inoculation of TNB and TSOB increased the temperature,pH,OM degradation,C/N ratio and germination index(GI)of compost.Compared with the control treatment(CK),the addition of inoculants reduced the release of NH3 and H2S,and transformed them into nitrogen and sulfur compounds,the hydrolysis of polymeric ferrous sulfate was promoted,resulting in relatively high content of sulfite and sulfate.At the same time,the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.展开更多
The effect of nanoplastics(NPs)on nitrite oxidation bacteria(NOB)community in treating high-strength wastewater remains unclear,which seriously affects the stability of nitrogen removal process.In this study,highly ac...The effect of nanoplastics(NPs)on nitrite oxidation bacteria(NOB)community in treating high-strength wastewater remains unclear,which seriously affects the stability of nitrogen removal process.In this study,highly active nitrifying sludge was enriched and exposed to 50nm polystyrene NPs(PS-NPs)for short-term(1,100,500,and 1000 mg/L,1.5 hr)and long-term(1,10,100 mg/L,40 days)at high nitrite concentration.In contrast to previous studies,our results showed that the exposures to PS-NPs had little effect on nitrifying performances.After long-term exposure,the protein/polysaccharide ratios in extracellular polymeric substances(EPS)were positively correlated with PS-NPs concentrations(0.78–0.99).The produced reactive oxygen species(ROS)were gradually removed,and PS-NPs higher than 10 mg/L caused damage to membrane integrity.Long-term exposure for 40 days increased the community diversity and caused significant differences between the control and exposed communities.The control group were dominated by Nitrobacter and Exiguobacterium,while the exposure group was dominated by Bacillus,Mycobacterium,and Nitrospira.A noticeable shift in the NOB community from Nitrobacter(26.5%to 3.4%)to Nitrospira(1.61%to 14.27%)was observed.A KEGG analysis indicated a decrease in cell growth and death,cell motility and energy metabolism.It appeared that NOB could adapt to PS-NPs stress through enhanced secretion and removal of oxidative damage.Overall,this study provided new insights into the response mechanism of NOB to PS-NPs exposure.展开更多
Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ...Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS.展开更多
This study investigated the acute nickel toxicity on nitrification of low ammonia synthetic wastewater at 10, 23, and 35°C. The nickel inhibition half-velocity constants(K_(I,Ni)) for ammonia oxidizing bacteria(A...This study investigated the acute nickel toxicity on nitrification of low ammonia synthetic wastewater at 10, 23, and 35°C. The nickel inhibition half-velocity constants(K_(I,Ni)) for ammonia oxidizing bacteria(AOB) and nitrite oxidizing bacteria(NOB) based on Ni/MLSS ratio at 10, 23, and 35°C were 5.4 and 5.6 mg Ni/g MLSS, 4.6 and 3.5 mg Ni/g MLSS, and 9.1 and 2.7 mg Ni/g MLSS, respectively. In addition, chronic toxicity of nickel to nitrification of low ammonia synthetic wastewater was investigated at 10°C in two sequencing batch reactors(SBRs). Long-term SBRs operation and short-term batch tests were comparable with respect to the extent of inhibition and corresponding Ni/MLSS ratio. The μ_(max), b, and K_o of AOB were 0.16 day^(-1), 0.098 day^(-1) and 2.08 mg O_2/L after long-term acclimatization to nickel of 1 mg/L at 10°C, high dissolved oxygen(DO)(7 mg/L) and long solids retention time(SRT) of 63–70 days. Acute nickel toxicity of nitrifying bacteria was completely reversible.展开更多
Mangrove provides a unique ecological niche to different microbes which play various roles in nutrient recycling as well as various environmental activities. The highly productive and diverse microbial community livin...Mangrove provides a unique ecological niche to different microbes which play various roles in nutrient recycling as well as various environmental activities. The highly productive and diverse microbial community living in mangrove ecosystems continuously transforms dead vegetation and recycle nitrogen, phosphorus, sulphur and other nutrients that can later be used by the plants. Mangrove ecosystems are rich in organic matter, and however, in general, they are nutrient-deficient ecosystems, especially of nitrogen and phosphorus. The present study investigated depth wise variation of Nitrifying bacteria, Nitrogen fixing bacteria, total bacterial population along with nitrate-nitrogen, nitrite-nitrogen and other physicochemical parameters of soil during pre-monsoon, monsoon and post-monsoon periods at three different sampling stations of mangrove sediments viz. deep forest region, rooted region and unrooted region. The microbial population was also found maximum in the deep forest sediment relative to the other two sites. Populations of cultureable microbes were found maximum in surface soil and decreased with increase in depth in Sundarban mangrove environment. A decreasing trend of total microbial load, nitrifying and nitrogen fixing bacteria with increase in depth were recorded throughout the year. Present study revealed the relationship among depth integrated variations of physicochemical components (viz. soil temperature, pH, salinity, nitrite nitrogen and nitrate nitrogen concentration) and total microbial load, nitrifying and nitrogen fixing bacteria microbial populations.展开更多
文摘Suspended and waterborne polyurethane immobilized nitrifying bacteria have been adopted for evaluating the effects of environmental changes, such as temperature, dissolved oxygen (DO) concentration and pH, on nitrification characteristics under conditions of low ammonia concentrations. The results showed that nitrification was prone to complete with increasing pH, DO and temperature. Sensitivity analysis demonstrated the effects of temperature and pH on nitrification feature of suspended bacteria were slightly greater than those of immobilized nitrifying bacteria. Immobilized cells could achieve complete nitrification at low ammonia concentrations when DO was sufficient. Continuous experiments were carried out to discuss the removal of ammonia nitrogen from synthetic micropollute source water with the ammonia concentration of about 1mg/L using immobilized nitrifying bacteria pellets in an up-flow inner circulation reactor under different hydraulic retention times (HRT). The continuous removal rate remains above 80% even under HRT 30 min. The results verified that the waterborne polyurethane immobilized nitrifying bacteria pellets had great potential applications for micro-pollution source water treatment.
文摘DMPP (3,4-dimethylpyrazole phosphate) has been used to reduce nitrogen (N) loss from leaching or denitrification and to improve N supply in agricultural land. However, its impact on soil nitrifying organisms and enzyme activities involved in N cycling is largely unknown. Therefore, an on-farm experiment, for two years, has been conducted, to elucidate the effects of DMPP on mineral N (NH4^+- N and NO3^--N) leaching, nitrifying organisms, and denitrifying enzymes in a rice-oilseed rape cropping system. Three treatments including urea alone (UA), urea + 1% DMPP (DP), and no fertilizer (CK), have been carded out. The results showed that DP enhanced the mean NH4^+-N concentrations by 19.1%-24.3%, but reduced the mean NO3^--N concentrations by 44.9%-56.6% in the leachate, under a two-year rice-rape rotation, compared to the UA treatment. The population of ammonia oxidizing bacteria, the activity of nitrate reductase, and nitrite reductase in the DP treatment decreased about 24.5%-30.9%, 14.9%-43.5%, and 14.7%-31.6%, respectively, as compared to the UA treatment. However, nitrite oxidizing bacteria and hydroxylamine reductase remained almost unaffected by DMPP. It is proposed that DMPP has the potential to either reduce NO3^--N leaching by inhibiting ammonia oxidization or N losses from denitrification, which is in favor of the N conversations in the rice-oilseed rape cropping system.
文摘The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/(L·d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.
文摘The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully with nitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammox granular sludge with good settling property and high conversion activity. The Anammox reactor worked well with the shortest HRT of 2 43 h. Under the condition that HRT w as 6 39 h and influent concentration of ammonia and nitrite was 10 mmol/L, the removal of ammonia and nitrite was 97 17% and 100 00%, respectively. Corresponding volumetric total nitrogen loading rate and volumetric total nitrogen conversion rate were 100 83 mmol/(L·d) and 98 95 mmol/(L·d). The performance of Anammox reactor was efficient and stable.
基金Supported by the Project of Scientific Research Base and Scientific Innovation Platform of Beijing Municipal Education CommissionNational Key Science and Technology Special Projects
文摘The short-term effects of temperature and free ammonia (FA) on ammonium oxidization were investigated in this study by operating several batch tests with two different partial nitrification aggregates, formed as either granules or flocs. The results showed that the rate of ammonium oxidation in both cultures increased significantly as temperature increased from 10 to 30 °C. The specific ammonium oxidation rate with the granules was 2-3 times higher than that with flocs at the same temperature. Nitrification at various FA concentrations and temperatures combination exhibited obvious inhibition in ammonium oxidation rate when FA was 90 mg·L 1 and tempera- ture dropped to 10 °C in the two systems. However, the increase in substrate oxidation rate of ammonia at 30 °C was observed. The results suggested that higher reaction temperature was helpful to reduce the toxicity of FA. Granules appeared to be more tolerant to FA attributed to the much fraction of ammonia oxidizing bacteria (AOB) and higher resistance to the transfer of ammonia into the bacterial aggregates, whereas in the floc system, the bacteria distributed throughout the entire aggregate. These results may contribute to the applicability of the nitrifying granules in wastewater treatment operated at high ammonium concentration.
基金supported by the Hi-Tech Re-search and Development Program (863) of China (No.2006AA05Z103, 2007AA06Z324)
文摘The effects of organic carbon/inorganic nitrogen (C/N) ratio on the nitrification processes and the community shifts of nitrifying biofilms were investigated by kinetic comparison and denaturing gradient gel electrophoresis (DGGE) analysis. The results showed that the nitrification rate decreased with an increasing organic concentration. However, the effect became weak when the carbon concentration reached a sufficiently high level. Denitrification was detected after organic carbon was added. The 12 h ammonium removal rate ranged from 85% to 30% at C/N = 0.5, 1, 2, 4, 8, and 16, as compared to the control (C/N = 0). The loss of nitrogen after 24 h at C/N = 0.5, 1, 2, 4, 8, and 16 was 31%, 18%, 24%, 65%, 59%, and 62%, respectively. The sequence analysis of 16S rRNA gene fragments revealed that the dominant populations changed from nitrifying bacteria (Nitrosomonas europaea and Nitrobacter sp.) to denitrifying bacteria (Pseudomonas sp., Acidovorax sp. and Comamonas sp.) with an increasing C/N ratio. Although at high C/N ratio the denitrifying bacteria were the dominant populations, nitrifying bacteria grew simultaneously. Consequently, nitrification process coexisted with denitrification.
基金supported by the Natural Science Foundation of Heilongjiang Province (No. E201461)the National Natural Science Foundation of China (No. 51408200)
文摘In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16 s rDNA sequence and denaturing gradient gel electrophoresis(DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index(SVI) value of 20 m L/g, high extracellular polymeric substance(EPS) content of 183.3 mg/L, high NH4+-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules.
基金This work was supported by the Wild Goose Array Special Projects(No.2023STYZ002)Heilongjiang Provincial Research Institute Project(Nos.2023SSKY001 and 2022SSKY003).
文摘In this study,high temperature thermotolerant nitrifying bacteria(TNB)and high temperature thermotolerant sulfide oxidizing bacteria(TSOB)were obtained from compost samples and inoculated into sewage sludge(SS)compost.The effects of inoculation on physical and chemical parameters,ammonia and hydrogen sulfide release,nitrogen form and sulfur compound content change and physical-chemical properties during nitrogen and sulfur conversion were studied.The results showed that inoculation of TNB and TSOB increased the temperature,pH,OM degradation,C/N ratio and germination index(GI)of compost.Compared with the control treatment(CK),the addition of inoculants reduced the release of NH3 and H2S,and transformed them into nitrogen and sulfur compounds,the hydrolysis of polymeric ferrous sulfate was promoted,resulting in relatively high content of sulfite and sulfate.At the same time,the physical and chemical properties of SS have a strong correlation with nitrogen and sulfur compounds.
基金supported by the Science and Technology Project of Henan Province (No.212102310510)the Doctoral Scientific Research Foundation of Anyang Institute of Technology (No.BSJ2019026)the Anyang Municipal Major Special Project (No.201928)。
文摘The effect of nanoplastics(NPs)on nitrite oxidation bacteria(NOB)community in treating high-strength wastewater remains unclear,which seriously affects the stability of nitrogen removal process.In this study,highly active nitrifying sludge was enriched and exposed to 50nm polystyrene NPs(PS-NPs)for short-term(1,100,500,and 1000 mg/L,1.5 hr)and long-term(1,10,100 mg/L,40 days)at high nitrite concentration.In contrast to previous studies,our results showed that the exposures to PS-NPs had little effect on nitrifying performances.After long-term exposure,the protein/polysaccharide ratios in extracellular polymeric substances(EPS)were positively correlated with PS-NPs concentrations(0.78–0.99).The produced reactive oxygen species(ROS)were gradually removed,and PS-NPs higher than 10 mg/L caused damage to membrane integrity.Long-term exposure for 40 days increased the community diversity and caused significant differences between the control and exposed communities.The control group were dominated by Nitrobacter and Exiguobacterium,while the exposure group was dominated by Bacillus,Mycobacterium,and Nitrospira.A noticeable shift in the NOB community from Nitrobacter(26.5%to 3.4%)to Nitrospira(1.61%to 14.27%)was observed.A KEGG analysis indicated a decrease in cell growth and death,cell motility and energy metabolism.It appeared that NOB could adapt to PS-NPs stress through enhanced secretion and removal of oxidative damage.Overall,this study provided new insights into the response mechanism of NOB to PS-NPs exposure.
基金supported by the major project of the National Natural Science Foundation of China(No.52193268013)the Fundamental Research Funds for the Central Universities(No.2022QNPY56).
文摘Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS.
基金supported by the Natural Sciences and Engineering Research Council of Canada(No.CRDPJ 458990-13)
文摘This study investigated the acute nickel toxicity on nitrification of low ammonia synthetic wastewater at 10, 23, and 35°C. The nickel inhibition half-velocity constants(K_(I,Ni)) for ammonia oxidizing bacteria(AOB) and nitrite oxidizing bacteria(NOB) based on Ni/MLSS ratio at 10, 23, and 35°C were 5.4 and 5.6 mg Ni/g MLSS, 4.6 and 3.5 mg Ni/g MLSS, and 9.1 and 2.7 mg Ni/g MLSS, respectively. In addition, chronic toxicity of nickel to nitrification of low ammonia synthetic wastewater was investigated at 10°C in two sequencing batch reactors(SBRs). Long-term SBRs operation and short-term batch tests were comparable with respect to the extent of inhibition and corresponding Ni/MLSS ratio. The μ_(max), b, and K_o of AOB were 0.16 day^(-1), 0.098 day^(-1) and 2.08 mg O_2/L after long-term acclimatization to nickel of 1 mg/L at 10°C, high dissolved oxygen(DO)(7 mg/L) and long solids retention time(SRT) of 63–70 days. Acute nickel toxicity of nitrifying bacteria was completely reversible.
文摘Mangrove provides a unique ecological niche to different microbes which play various roles in nutrient recycling as well as various environmental activities. The highly productive and diverse microbial community living in mangrove ecosystems continuously transforms dead vegetation and recycle nitrogen, phosphorus, sulphur and other nutrients that can later be used by the plants. Mangrove ecosystems are rich in organic matter, and however, in general, they are nutrient-deficient ecosystems, especially of nitrogen and phosphorus. The present study investigated depth wise variation of Nitrifying bacteria, Nitrogen fixing bacteria, total bacterial population along with nitrate-nitrogen, nitrite-nitrogen and other physicochemical parameters of soil during pre-monsoon, monsoon and post-monsoon periods at three different sampling stations of mangrove sediments viz. deep forest region, rooted region and unrooted region. The microbial population was also found maximum in the deep forest sediment relative to the other two sites. Populations of cultureable microbes were found maximum in surface soil and decreased with increase in depth in Sundarban mangrove environment. A decreasing trend of total microbial load, nitrifying and nitrogen fixing bacteria with increase in depth were recorded throughout the year. Present study revealed the relationship among depth integrated variations of physicochemical components (viz. soil temperature, pH, salinity, nitrite nitrogen and nitrate nitrogen concentration) and total microbial load, nitrifying and nitrogen fixing bacteria microbial populations.