Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesiz...Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W^2.4+N^2.4-. It has a band gap of 1.6 eV at 0GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimet- ric (3.1 kJ/g/and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material, These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material.展开更多
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average...The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.展开更多
Gallium Nitride film was successfully separated from sapphire substrate by laser radiation. The absorption of the 248 nm radiation by the GaN at the interface results in rapid thermal decomposition of interfacial laye...Gallium Nitride film was successfully separated from sapphire substrate by laser radiation. The absorption of the 248 nm radiation by the GaN at the interface results in rapid thermal decomposition of interfacial layer, yielding metallic Ga and N2 gas. The substrate can be easily removed by heating above the Ga melting point (29°C). X-ray diffraction, atomic force microscopy and photoluminescence of GaN before and after lift-off process have been performed, which demonstrated that the separation and transfer process do not alter the structural quality of the GaN films. And further discussions on the threshold energy and crack-free strategies of laser lift-off process have also been presented.展开更多
As a choke point in water electrolysis,the oxygen evolution reaction(OER)suffers from the severe electrode polarization and large overpotential.Herein,the porous hierarchical hetero-(Nis Fe)FeN/Ni catalysts are in sit...As a choke point in water electrolysis,the oxygen evolution reaction(OER)suffers from the severe electrode polarization and large overpotential.Herein,the porous hierarchical hetero-(Nis Fe)FeN/Ni catalysts are in situ constructed for the eficient electrocatalytic OER.X-ray absorption fine structure characterizations reveal the strong Ni-Fe bimetallic interaction in(Niz Fex)FeN/Ni.Theoretical study indicates the heterojunction and bimetallic interaction decrease the free-energy change for the rate-limiting step of the OER and the overpotential thereof.In addition,the high conductivity and porous hierarchical morphology favor the electron transfer,electrolyte access and O2 release.Consequently,the optimized catalyst achieves a low overpotential of 223 mV at 10 mA.cm^-2,a small Tafel slope of 68 mV:dec^-1,and a high stability.The excellent performance of the optimized catalyst is also demonstrated by the overall water electrolysis with a low working voltage and high Faradaic efficiency.Moreover,the correlation between the structure and performance is well established by the experimental characterizations and theoretical calculations,which confirms the origin of the OER activity from the surface metal oxyhydroxide in situ generated upon applying the current.This study suggests a promising approach to the advanced OER electrocatalysts for practical applications by constructing the porous hierarchical metal-compound/metal heterojunctions.展开更多
A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the amm...A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.展开更多
基金financially supported by the Ministry of Science and Technology of the People’s Republic of China (2016YFA0300404 and 2015CB921202)the National Natural Science Foundation of China (51372112 and 11574133)+2 种基金the NSF of Jiangsu Province (BK20150012)the Fundamental Research Funds for the Central Universities,the Science Challenge Project (TZ2016001)Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501
文摘Transition metal nitrides have been suggested to have both high hardness and good thermal stability with large potential application value, but so far stable superhard transition metal nitrides have not been synthesized. Here, with our newly developed machine-learning accelerated crystal structure searching method, we designed a superhard tungsten nitride, h-WN6, which can be synthesized at pressure around 65 GPa and quenchable to ambient pressure. This h-WN6 is constructed with single-bonded armchair-like N6 rings and presents ionic-like features, which can be formulated as W^2.4+N^2.4-. It has a band gap of 1.6 eV at 0GPa and exhibits an abnormal gap broadening behavior under pressure. Excitingly, this h-WN6 is found to be the hardest among transition metal nitrides known so far (Vickers hardness around 57 GPa) and also has a very high melting temperature (around 1,900 K). Additionally, the good gravimet- ric (3.1 kJ/g/and volumetric (28.0 kJ/cm3) energy densities make this nitrogen-rich compound a potential high-energy-density material, These predictions support the designing rules and may stimulate future experiments to synthesize superhard and high-energy-density material.
基金supported by the National Natural Science Foundation of China (No. 50274021)
文摘The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4.
基金supported by Special Funds for Major Stale Basic Research Project G20000683863 Hi-tech Research Project,Distinguished Young Scientist Grant(60025411)+1 种基金National Nature Science Foundation of China(69976014,69636010,69806006,69987001)benefited from using the laser device of the Pulsed Laser Deposition laboratory in Nanjing University.
文摘Gallium Nitride film was successfully separated from sapphire substrate by laser radiation. The absorption of the 248 nm radiation by the GaN at the interface results in rapid thermal decomposition of interfacial layer, yielding metallic Ga and N2 gas. The substrate can be easily removed by heating above the Ga melting point (29°C). X-ray diffraction, atomic force microscopy and photoluminescence of GaN before and after lift-off process have been performed, which demonstrated that the separation and transfer process do not alter the structural quality of the GaN films. And further discussions on the threshold energy and crack-free strategies of laser lift-off process have also been presented.
基金This work was jointly supported by the National Key Research and Development Program of China(Nos.2017YFA0206500 and 2018YFA0209103)the National Natural Science Foundation of China(Nos.21832003,21773111,51571110,and 21573107)the Fundamental Research Funds for the Central Universities(No.020514380126).
文摘As a choke point in water electrolysis,the oxygen evolution reaction(OER)suffers from the severe electrode polarization and large overpotential.Herein,the porous hierarchical hetero-(Nis Fe)FeN/Ni catalysts are in situ constructed for the eficient electrocatalytic OER.X-ray absorption fine structure characterizations reveal the strong Ni-Fe bimetallic interaction in(Niz Fex)FeN/Ni.Theoretical study indicates the heterojunction and bimetallic interaction decrease the free-energy change for the rate-limiting step of the OER and the overpotential thereof.In addition,the high conductivity and porous hierarchical morphology favor the electron transfer,electrolyte access and O2 release.Consequently,the optimized catalyst achieves a low overpotential of 223 mV at 10 mA.cm^-2,a small Tafel slope of 68 mV:dec^-1,and a high stability.The excellent performance of the optimized catalyst is also demonstrated by the overall water electrolysis with a low working voltage and high Faradaic efficiency.Moreover,the correlation between the structure and performance is well established by the experimental characterizations and theoretical calculations,which confirms the origin of the OER activity from the surface metal oxyhydroxide in situ generated upon applying the current.This study suggests a promising approach to the advanced OER electrocatalysts for practical applications by constructing the porous hierarchical metal-compound/metal heterojunctions.
文摘A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.