In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra ...In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.展开更多
In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Dri...In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Drinfeld modules V, we construct Nichols algebra B(V) over the weak Hopf algebra H, and a series of weak Hopf algebras. Some results of [8] are generalized.展开更多
In this paper, two kinds of skew derivations of a type of Nichols algebras are intro- duced, and then the relationship between them is investigated. In particular they satisfy the quantum Serre relations. Therefore, t...In this paper, two kinds of skew derivations of a type of Nichols algebras are intro- duced, and then the relationship between them is investigated. In particular they satisfy the quantum Serre relations. Therefore, the algebra generated by these derivations and corresponding automorphisms is a homomorphic image of the Drinfeld-Jimbo quantum enveloping algebra Uq^+(g), which proves the Nichols algebra becomes a/gq(g)-module algebra. But the Nichols algebra considered here is exactly Uq^+(g), namely, the positive part of the Drinfeld-Jimbo quantum enveloping algebra Uq^+(g), it turns out that Uq^+(g) is aUq^+(g)-module algebra.展开更多
基金Supported by the National Natural Science Foundation of China(11271319,11301126)
文摘In this paper, we study non-cosemisimple Hopf algebras through their underlying coalgebra structure. We introduce the concept of the maximal pointed subcoalgebra/Hopf sub- algebra. For a non-cosemisimple Hopf algebra A with the Chevalley property, if its diagram is a Nichols algebra, then the diagram of its maximal pointed Hopf subalgebra is also a Nichols algebra. When A is of finite dimension, we provide a necessary and sufficient condition for A's diagram equaling the diagram of its maximal pointed Hopf subalgebra.
基金Supported by ZJNSF(LY17A010015,LZ14A010001)NNSF(11171296),CSC
文摘In this paper, we study a Yetter-Drinfeld module V over a weak Hopf algebra H.Although the category of all left H-modules is not a braided tensor category, we can define a Yetter-Drinfeld module. Using this Yetter-Drinfeld modules V, we construct Nichols algebra B(V) over the weak Hopf algebra H, and a series of weak Hopf algebras. Some results of [8] are generalized.
基金Supported by the National Natural Science Foundation of China (Grant No.10771182)
文摘In this paper, two kinds of skew derivations of a type of Nichols algebras are intro- duced, and then the relationship between them is investigated. In particular they satisfy the quantum Serre relations. Therefore, the algebra generated by these derivations and corresponding automorphisms is a homomorphic image of the Drinfeld-Jimbo quantum enveloping algebra Uq^+(g), which proves the Nichols algebra becomes a/gq(g)-module algebra. But the Nichols algebra considered here is exactly Uq^+(g), namely, the positive part of the Drinfeld-Jimbo quantum enveloping algebra Uq^+(g), it turns out that Uq^+(g) is aUq^+(g)-module algebra.