As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for r...As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for regular n-i-p perovskite solar cells(PSCs).However,for the hysteresis-free and potentially more stable inverted p-i-n PSCs,CBD processing is rarely studied to improve the device performance.In this work,we first present a CBD planar NiO x film as the efficient hole transport layer for the inverted per-ovskite solar cells(IPSCs).The morphologies and semiconducting properties of the NiO x film can be ad-justed by varying the concentration of[Ni(H 2 O)x(NH 3)6-x]2+cation via in-situ monitoring of the CBD re-action process.The characterizations of ultraviolet photoelectron spectroscopy,transient absorption spec-troscopy,time-resolved photoluminescence suggest that the CBD planar NiO x film possesses enhanced conductivity and aligned energy band levels with perovskite,which benefits for the charge transport in the IPSCs.The devices based on planar NiO x at 50°C and low nickel precursor concentration achieved an enhanced efficiency from 16.14%to 18.17%.This work established an efficient CBD route to fabricate planar NiO x film for PSCs and paved the way for high performance PSCs with CBD-prepared hole transporting materials.展开更多
By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-vi...By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.展开更多
采用一步溶液法构筑了反式结构NiO/NH_2CH=NH2PbI_3(FAPbI_3)/PCBM/Ag钙钛矿电池。本文研究了钙钛矿薄膜FAPb I3结晶性、表面形貌及光电性能的影响。实验结果表明构筑反式钙钛矿电池短路电流Jsc=15.89 mA·cm-2,开路电压Voc=0.8 m V...采用一步溶液法构筑了反式结构NiO/NH_2CH=NH2PbI_3(FAPbI_3)/PCBM/Ag钙钛矿电池。本文研究了钙钛矿薄膜FAPb I3结晶性、表面形貌及光电性能的影响。实验结果表明构筑反式钙钛矿电池短路电流Jsc=15.89 mA·cm-2,开路电压Voc=0.8 m V,填充因子FF=32%,光电转换效率为PCE=4.49%。展开更多
基金supported by the National Key Re-search and Development Plan(2017YFE0131900,2019YFE0107200)the National Natural Science Foundation of China(52072284,21875178,91963209)+1 种基金the Science and Technology Department of Hubei Province(2020CFB427)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHD2020-001).
文摘As a convenient,low-cost and up-scalable solution route,chemical bath deposition(CBD)has exhibited impressive advantages in fabricating electron transporting materials like SnO_(2),achieving record efficien-cies for regular n-i-p perovskite solar cells(PSCs).However,for the hysteresis-free and potentially more stable inverted p-i-n PSCs,CBD processing is rarely studied to improve the device performance.In this work,we first present a CBD planar NiO x film as the efficient hole transport layer for the inverted per-ovskite solar cells(IPSCs).The morphologies and semiconducting properties of the NiO x film can be ad-justed by varying the concentration of[Ni(H 2 O)x(NH 3)6-x]2+cation via in-situ monitoring of the CBD re-action process.The characterizations of ultraviolet photoelectron spectroscopy,transient absorption spec-troscopy,time-resolved photoluminescence suggest that the CBD planar NiO x film possesses enhanced conductivity and aligned energy band levels with perovskite,which benefits for the charge transport in the IPSCs.The devices based on planar NiO x at 50°C and low nickel precursor concentration achieved an enhanced efficiency from 16.14%to 18.17%.This work established an efficient CBD route to fabricate planar NiO x film for PSCs and paved the way for high performance PSCs with CBD-prepared hole transporting materials.
基金sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010EM027)the Applied and Basic Research Project (11-2-4-1-(2)-jch) of Qingdao Municipal Science Technology Commission of China
文摘By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.
文摘采用一步溶液法构筑了反式结构NiO/NH_2CH=NH2PbI_3(FAPbI_3)/PCBM/Ag钙钛矿电池。本文研究了钙钛矿薄膜FAPb I3结晶性、表面形貌及光电性能的影响。实验结果表明构筑反式钙钛矿电池短路电流Jsc=15.89 mA·cm-2,开路电压Voc=0.8 m V,填充因子FF=32%,光电转换效率为PCE=4.49%。