Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly...Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe204 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of -58 dB and - 12 times broadening of the bandwidth (at -10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe204-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.展开更多
The charge cartier separation and surface catalytic redox reactions are of primary importance as elementary steps in photocatalytic hydrogen evolution. In this study, both of these two processes in photocatalytic hydr...The charge cartier separation and surface catalytic redox reactions are of primary importance as elementary steps in photocatalytic hydrogen evolution. In this study, both of these two processes in photocatalytic hydrogen evolution over graphitic carbon nitride (g-C3N4) were greatly promoted with the earth-abundant ferrites (Co, Ni)Fe2O4 modification. CoFe2O4 was further demonstrated to be a better modifier for g-C3N4 as compared to NiFe2O4, due to the more efficient charge carrier transfer as well as superior surface oxidative catalytic activity. When together loading CoFe2O4 and reductive hydrogen production electrocatalyst Pt onto g-C3N4, the obtained Pt/g-C3N4/CoFe2O4 photocatalyst achieved visible-light (2 〉 420 nm) hydrogen production rate 3.5 times as high as Pt/g-C3N4, with the apparent quantum yield reaching 3.35 % at 420 nm.展开更多
(85Cu-15Ni)/(10NiO-NiFe2O4) cermets were prepared with Cu-Ni mixed powders as toughening metallic phase and 10NiO-NiFe2O4 as ceramic matrix. The phase composition, microstructure of composite and the effect of metalli...(85Cu-15Ni)/(10NiO-NiFe2O4) cermets were prepared with Cu-Ni mixed powders as toughening metallic phase and 10NiO-NiFe2O4 as ceramic matrix. The phase composition, microstructure of composite and the effect of metallic phase content on bending strength, hardness, fracture toughness and thermal shock resistance were studied. X-ray diffraction analysis indicates the coexistence of (Cu-Ni), NiO and NiFe2O4 phases in the cermets. Within the content range of metallic phase from 0% to 20% (mass fraction), the maximal bending strength (176.4 MPa) and the minimal porosity (3.9%) of composite appear at the metallic phase content of 5%. The fracture toughness increases and Vickers’ hardness decreases with increasing metal content. When the thermal shock temperature difference (△t) is below 200 ℃, the loss rate of residual strength for 10NiO-NiFe2O4 ceramic is only 8%, but about 40% for (85Cu-15Ni)/(10NiO-NiFe2O4) cermets. As △t is above 200 ℃, the residual strength sharply decreases for sample CN0 and falls slowly for samples CN5-CN20.展开更多
A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-...A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.展开更多
(Cu-Ni)/(10NiO-90NiFe204) cermet inert anodes containing metal Cu-Ni0, 5, 10, 15 and 20 wt pct were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the co...(Cu-Ni)/(10NiO-90NiFe204) cermet inert anodes containing metal Cu-Ni0, 5, 10, 15 and 20 wt pct were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the content of metal Cu-Ni has little effect on the steady-state concentration of Ni in the electrolyte and the values could not be used to effectively differentiate their corrosion resistance. The steady-state concentration of Fe decreases from 304×10^-6 to 168×10^-6 and that of Cu increases from 21×10^-6 to 71×10^-6 with the content of metal Cu-Ni increasing from 0 to 20 wt pct. Post-examination shows that metallic phase Cu-Ni is corroded preferentially during electrolysis and many pores are left at the anode surface. Considering the corrosion resistance and electrical conductivity, the cermet containing metal Cu-Ni 5 wt pct should be selected and studied further.展开更多
基金This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 11774027, 51132002, 51072024 and 51372282).
文摘Lightweight and high-efficiency microwave absorption materials with tunable electromagnetic properties is a highly sought-after goal and a great challenge for researchers. In this work, a simple strategy of confinedly implanting small NiFe204 clusters on reduced graphene oxide is demonstrated, wherein the magnetic clusters are tailored, and more significantly, the electromagnetic properties are highly tuned. The microwave absorption was efficiently optimized yielding a maximum reflection loss of -58 dB and - 12 times broadening of the bandwidth (at -10 dB). Furthermore, tailoring of the implanted magnetic clusters successfully realized the selective-frequency microwave absorption, and the absorption peak could shift from 4.6 to 16 GHz covering 72% of the measured frequency range. The fascinating performances eventuate from the appropriately tailored clusters, which provide optimal synergistic effects of the dielectric and magnetic loss caused by multi-relaxation, conductance, and resonances. These findings open new avenues for designing microwave absorption materials in future, and the well-tailored NiFe204-rGO can be readily applied as a multi-functional microwave absorption material in various fields ranging from civil and commerce to military and aerospace.
文摘制备了添加不同含量的Cu和Ni金属粉末作为导电组元的NiFe2O4基金属陶瓷材料,研究了材料的物相组成、显微组织以及金属相含量对材料致密度和电导率的影响。研究结果表明,所制备的金属陶瓷材料由NiFe2O4和Cu Ni合金相组成,其中细小且形状不规则的(Cu Ni)相均匀地镶嵌在NiFe2O4陶瓷基体上;试样的致密度在金属含量为0~20%范围内存在极大值;Cu Ni NiFe2O4金属陶瓷遵循半导体导电机理,其电导率随着温度的升高和金属含量的增大而增大。
基金the National Natural Science Foundation of China (51323011 and 51236007)the Program for New Century Excellent Talents in University (NCET-130455)+4 种基金the Natural Science Foundation of Shaanxi Province (2014KW07-02)the Natural Science Foundation of Jiangsu Province (BK20141212)the Nano Research Program of Suzhou City (ZXG201442 and ZXG2013003)the Foundation for the Author of National Excellent Doctoral Dissertation of China (201335)the Fundamental Research Funds for the Central Universities
文摘The charge cartier separation and surface catalytic redox reactions are of primary importance as elementary steps in photocatalytic hydrogen evolution. In this study, both of these two processes in photocatalytic hydrogen evolution over graphitic carbon nitride (g-C3N4) were greatly promoted with the earth-abundant ferrites (Co, Ni)Fe2O4 modification. CoFe2O4 was further demonstrated to be a better modifier for g-C3N4 as compared to NiFe2O4, due to the more efficient charge carrier transfer as well as superior surface oxidative catalytic activity. When together loading CoFe2O4 and reductive hydrogen production electrocatalyst Pt onto g-C3N4, the obtained Pt/g-C3N4/CoFe2O4 photocatalyst achieved visible-light (2 〉 420 nm) hydrogen production rate 3.5 times as high as Pt/g-C3N4, with the apparent quantum yield reaching 3.35 % at 420 nm.
基金Project(2005CB623703) supported by the National Key Basic Research Program of ChinaProject(50474051) supported by the National Natural Science Foundation of ChinaProject(03JJY3080) supported by the Natural Science Foundation of Hunan Province, China
文摘(85Cu-15Ni)/(10NiO-NiFe2O4) cermets were prepared with Cu-Ni mixed powders as toughening metallic phase and 10NiO-NiFe2O4 as ceramic matrix. The phase composition, microstructure of composite and the effect of metallic phase content on bending strength, hardness, fracture toughness and thermal shock resistance were studied. X-ray diffraction analysis indicates the coexistence of (Cu-Ni), NiO and NiFe2O4 phases in the cermets. Within the content range of metallic phase from 0% to 20% (mass fraction), the maximal bending strength (176.4 MPa) and the minimal porosity (3.9%) of composite appear at the metallic phase content of 5%. The fracture toughness increases and Vickers’ hardness decreases with increasing metal content. When the thermal shock temperature difference (△t) is below 200 ℃, the loss rate of residual strength for 10NiO-NiFe2O4 ceramic is only 8%, but about 40% for (85Cu-15Ni)/(10NiO-NiFe2O4) cermets. As △t is above 200 ℃, the residual strength sharply decreases for sample CN0 and falls slowly for samples CN5-CN20.
基金support from the National Basic Research Program of China (2014CB239702)National Natural Science Foundation of China (Grant Nos. 21371121, 21506126 and 51502174)+1 种基金Shenzhen Science and Technology Research Foundation (Grant Nos. JCYJ20150324141711645,JCYJ20150324141711616 and JCYJ20150626090504916)China Postdoctoral Science Foundation (2015 M582401 and 2015 M572349)
文摘A Ni Fe_2O_4/expanded graphite(Ni Fe_2O_4/EG)nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 m Ah g^(-1)at a current of 1 A g^(-1)after 800 cycles. This good performance may beattributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure,efficiently accommodate volume changes in the Ni Fe_2O_4-based anodes, and alleviate aggregation of Ni Fe_2O_4 nanoparticles.
基金financial support from National Basic Research Program of China(No.2005CB623703)National Natural Science Foundation of China(No.50474051).
文摘(Cu-Ni)/(10NiO-90NiFe204) cermet inert anodes containing metal Cu-Ni0, 5, 10, 15 and 20 wt pct were prepared and their corrosion resistance to Na3AlF6-Al2O3 melts was investigated. The results indicate that the content of metal Cu-Ni has little effect on the steady-state concentration of Ni in the electrolyte and the values could not be used to effectively differentiate their corrosion resistance. The steady-state concentration of Fe decreases from 304×10^-6 to 168×10^-6 and that of Cu increases from 21×10^-6 to 71×10^-6 with the content of metal Cu-Ni increasing from 0 to 20 wt pct. Post-examination shows that metallic phase Cu-Ni is corroded preferentially during electrolysis and many pores are left at the anode surface. Considering the corrosion resistance and electrical conductivity, the cermet containing metal Cu-Ni 5 wt pct should be selected and studied further.