A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and st...A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.展开更多
Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetrago...Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetragonal structure at room temperature. Its martensitic start temperature Ms, martensitic finish temperature Mf on cooling, and austenitic start temperature As, austenitic finish temperature Af on heating are 260.2, 237.8, 262.5 and 287.8 ℃, respectively. The compressive strength and strain of Ni54Mn25Ga21 single crystal were measured to be 845 MPa and 20.5%, respectively, with compressive axis along the growth direction of the rods. An excellent shape-memory strain of 6.1%, which is the best performance among high-temperature shape-memory alloys up to the present, is obtained when prestrained to 8%.展开更多
基金the National Natural Science Foundation of China (No. 50271002) New Century Program for Excellent Talents of Ministry of Education of China (No. 04-0165).
文摘A statistical work has been done to collect the composition ranges of Ni-Mn-Ga alloys exhibiting different structures and martensite start temperature (M,), large magnetostrain or the co-existence of magnetic and structural transitions. The alloys with five-layered (5M), seven-layered (7M) modulated and non-modulated (T) martensitic structures were mapped in the graph. An empirical formula has been presented to reflect the effect of elements nickel (Ni ), manganese ( Mn ) and gallium (Ga), on the martensite start temperature (M3). The martensitic structure is sensitive to the composition and the martensitic transformation temperature is most drastically affected by the Ni content. The alloys with large magnetostrain or co-existence effect of the magnetic and structural transitions were also listed in a limited area.
基金Project(50371005) supported by the National Natural Science Foundation of China
文摘Ni54Mn25Ga21 alloy was prepared to investigate the microstructure, martensitic transformation and high-temperature shape-memory effect. Ni54Mn25Ga21 alloy exhibits single phase of non-modulated martensite with tetragonal structure at room temperature. Its martensitic start temperature Ms, martensitic finish temperature Mf on cooling, and austenitic start temperature As, austenitic finish temperature Af on heating are 260.2, 237.8, 262.5 and 287.8 ℃, respectively. The compressive strength and strain of Ni54Mn25Ga21 single crystal were measured to be 845 MPa and 20.5%, respectively, with compressive axis along the growth direction of the rods. An excellent shape-memory strain of 6.1%, which is the best performance among high-temperature shape-memory alloys up to the present, is obtained when prestrained to 8%.