Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects o...Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation.展开更多
The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical redu...The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical reduction of COin solid oxide electrolysis cells(SOECs). At high temperature, only CO is produced with high current densities and Faradic efficiency while the reactor is complicated and a better sealing technique is urgently needed. The typical electrolytes such as zirconia-based oxides, ceria-based oxides and lanthanum gallates-based oxides, anodes and cathodes are introduced in this review, and the cathode materials, such as conventional metal–ceramics(cermets), mixed ionic and electronic conductors(MIECs) are discussed in detail. In the future, to gain more value-added products, the electrolyte, cathode and anode materials should be developed to allow SOECs to be operated at temperature range of 573–873 K. At those temperatures, SOECs may combine the advantages of the low temperature system and the high temperature system to produce various products with high current densities.展开更多
基金supported by the National Key R&D Program of China(No.2018YFB1502202)the Fundamental Research Funds for the Central Universities(No.FRF-GF-20-09B).
文摘Performance degradation shortens the life of solid oxide fuel cells in practical applications.Revealing the degradation mechanism is crucial for the continuous improvement of cell durability.In this work,the effects of cell operating conditions on the terminal voltage and anode microstructure of a Ni-yttria-stabilized zirconia anode-supported single cell were investigated.The microstructure of the anode active area near the electrolyte was characterized by laser optical microscopy and focused ion beam-scanning electron microscopy.Ni depletion at the anode/electrolyte interface region was observed after 100 h discharge tests.In addition,the long-term stability of the single cell was evaluated at 700℃for 3000 h.After an initial decline,the anode-supported single cell exhibits good durability with a voltage decay rate of 0.72%/kh and an electrode polarization resistance decay rate of 0.17%/kh.The main performance loss of the cell originates from the initial degradation.
基金the financial support from the National Natural Science Foundation of China(91545202)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB17020400)
文摘The effort on electrochemical reduction of COto useful chemicals using the renewable energy to drive the process is growing fast recently. In this review, we introduce the recent progresses on the electrochemical reduction of COin solid oxide electrolysis cells(SOECs). At high temperature, only CO is produced with high current densities and Faradic efficiency while the reactor is complicated and a better sealing technique is urgently needed. The typical electrolytes such as zirconia-based oxides, ceria-based oxides and lanthanum gallates-based oxides, anodes and cathodes are introduced in this review, and the cathode materials, such as conventional metal–ceramics(cermets), mixed ionic and electronic conductors(MIECs) are discussed in detail. In the future, to gain more value-added products, the electrolyte, cathode and anode materials should be developed to allow SOECs to be operated at temperature range of 573–873 K. At those temperatures, SOECs may combine the advantages of the low temperature system and the high temperature system to produce various products with high current densities.