通过在浓硝酸、w=5%NaCl溶液、c=1mol/LH2SO4溶液中的浸渍试验,研究了不同基体上的Ni W非晶态合金镀层的耐蚀性;通过测定在w=5%NaCl溶液及c=1mol/L的HNO3溶液、H2SO4溶液、HCl溶液中的阳极极化曲线,研究了Ni W非晶态合金镀层薄膜本身... 通过在浓硝酸、w=5%NaCl溶液、c=1mol/LH2SO4溶液中的浸渍试验,研究了不同基体上的Ni W非晶态合金镀层的耐蚀性;通过测定在w=5%NaCl溶液及c=1mol/L的HNO3溶液、H2SO4溶液、HCl溶液中的阳极极化曲线,研究了Ni W非晶态合金镀层薄膜本身的耐蚀性;采用线性极化方法对Ni W B非晶态合金镀层在w=5%Na Cl溶液、c=1mol/LH2SO4溶液及HNO3溶液中的腐蚀速度进行了测定,并测定了以上2种非晶态合金镀层的硬度与耐磨性。结果表明,非晶态的Ni W、Ni W B镀层比晶态镀层的耐腐蚀性能要好,而Ni W B非晶态合金镀层比Ni W非晶态合金镀层的耐蚀性能又明显提高;经热处理后,Ni W B非晶态镀层的硬度值明显高于Ni W非晶态镀层,耐磨性能都提高了1倍以上。Ni W、Ni W B非晶态镀层极有望成为一种比较好的代铬镀层。展开更多
研究了镀液组成及工艺参数对电沉积RE Ni W B复合镀层硬度和沉积速度的影响,以及不同热处理温度下复合镀层硬度、磨损率及抗氧化性的变化规律。结果表明:在最佳工艺条件下,复合镀层的沉积速率为5 13μm/h,硬度为667HV。采用X射线能谱... 研究了镀液组成及工艺参数对电沉积RE Ni W B复合镀层硬度和沉积速度的影响,以及不同热处理温度下复合镀层硬度、磨损率及抗氧化性的变化规律。结果表明:在最佳工艺条件下,复合镀层的沉积速率为5 13μm/h,硬度为667HV。采用X射线能谱仪测试镀层成分表明,RE Ni W B复合镀层中各成分的质量分数分别为wW=0 49%,wB=1 17%,wCe=1 99%。热处理温度对复合镀层硬度、磨损率及抗氧化性有较大的影响,热处理温度提高,复合镀层的硬度先增加后降低,磨损率先降低后增加;当热处理温度为400℃时,硬度和磨损率分别达到最大值和最小值,即1087HV和0 64mg/(cm2·h);复合镀层的氧化增重随热处理温度的增加而增加,当热处理温度低于400℃时,镀层的氧化增重较小,热处理温度高于600℃,复合镀层的氧化增重大幅度增加。展开更多
To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic struct...To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic structure, surface morphology, heat treatment and corrosion resistance, of the alloy were studied by DSC, XRD, SEM and electrochemical techniques. The results showed that the structure of the alloy was greatly affected by the cooperation of boron compound. DSC experiment combined with X-ray diffractometry indicated that the obtained Ni-W-B alloy was still in amorphous structure although W content in the alloy was decreased by the addition of DMAB. After heat treatment at 400 ℃ for 1 h, the microhardness was increased from 612 to 947 kg.mm^-2 that was com- parative to Cr coating. The appearance of the as-plated coating was in f'me and slice grains and kept almost no change after heat treatment. In w=0.03 NaC1 solution the as-plated coating presented very good corrosion resistance. After the coating was heat-treated its corrosion resistance was enhanced.展开更多
The process and properties of electroless plating Ni-W-B alloy have been studied. The results show that the deposits containing W and B are obtained, and the deposition rate of the bath is increased with increase of W...The process and properties of electroless plating Ni-W-B alloy have been studied. The results show that the deposits containing W and B are obtained, and the deposition rate of the bath is increased with increase of W content when a certain amount of sodium tungstate solution is added in the Ni-B bath. The Ni-W-B alloy is amorphous as deposition and its resistivity increases directly with the increase of W content in the coating, but decreases gradually with increasing the deposit thickness. XRD and SEM show that the distributions of W and B in the Ni-W-B alloy film are very uniform and dispersed without any segregation.展开更多
The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in t...The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.展开更多
The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B...The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B4C-PTFE composite coatings, were all investigated. The results show that W and B contents increase in the RE-Ni-W-B composite coating by using pulse electrodeposition. RE, PTFE and B4C particles can be co-deposited into the Ni-W-B composite coating, but the amount is very little. X-ray diffraction analysis displays that the RE-Ni-W-B-B4C-PTFE composite coating is mainly amorphous, partially crystallized as-deposited, but it turns into crystalline state and PTFE in the coatings will decompose after the heat treatment temperature is higher than 400℃. The hardness of the composite coating increases with increasing heat treatment temperature, it comes up to the highest value at 400℃. The oxidized film mass of the composite coating increases slowly when the oxidation temperature is lower than 500℃, but it increases linearly and sharply after the oxidation temperature is higher than 600℃.展开更多
文摘 通过在浓硝酸、w=5%NaCl溶液、c=1mol/LH2SO4溶液中的浸渍试验,研究了不同基体上的Ni W非晶态合金镀层的耐蚀性;通过测定在w=5%NaCl溶液及c=1mol/L的HNO3溶液、H2SO4溶液、HCl溶液中的阳极极化曲线,研究了Ni W非晶态合金镀层薄膜本身的耐蚀性;采用线性极化方法对Ni W B非晶态合金镀层在w=5%Na Cl溶液、c=1mol/LH2SO4溶液及HNO3溶液中的腐蚀速度进行了测定,并测定了以上2种非晶态合金镀层的硬度与耐磨性。结果表明,非晶态的Ni W、Ni W B镀层比晶态镀层的耐腐蚀性能要好,而Ni W B非晶态合金镀层比Ni W非晶态合金镀层的耐蚀性能又明显提高;经热处理后,Ni W B非晶态镀层的硬度值明显高于Ni W非晶态镀层,耐磨性能都提高了1倍以上。Ni W、Ni W B非晶态镀层极有望成为一种比较好的代铬镀层。
文摘 研究了镀液组成及工艺参数对电沉积RE Ni W B复合镀层硬度和沉积速度的影响,以及不同热处理温度下复合镀层硬度、磨损率及抗氧化性的变化规律。结果表明:在最佳工艺条件下,复合镀层的沉积速率为5 13μm/h,硬度为667HV。采用X射线能谱仪测试镀层成分表明,RE Ni W B复合镀层中各成分的质量分数分别为wW=0 49%,wB=1 17%,wCe=1 99%。热处理温度对复合镀层硬度、磨损率及抗氧化性有较大的影响,热处理温度提高,复合镀层的硬度先增加后降低,磨损率先降低后增加;当热处理温度为400℃时,硬度和磨损率分别达到最大值和最小值,即1087HV和0 64mg/(cm2·h);复合镀层的氧化增重随热处理温度的增加而增加,当热处理温度低于400℃时,镀层的氧化增重较小,热处理温度高于600℃,复合镀层的氧化增重大幅度增加。
基金Project supported by the Natural Science Foundation of Fujian Province (No. E0210005) and the National Natural Science Foundation of China (No. 29773039).
文摘To strengthen the properties of Ni-W alloy, dimethylamine borane (DMAB) was added to an alloy Ni-W electrolyte solution and a ternary Ni-W-B alloy was electrodeposited. The electrodeposition, crystallographic structure, surface morphology, heat treatment and corrosion resistance, of the alloy were studied by DSC, XRD, SEM and electrochemical techniques. The results showed that the structure of the alloy was greatly affected by the cooperation of boron compound. DSC experiment combined with X-ray diffractometry indicated that the obtained Ni-W-B alloy was still in amorphous structure although W content in the alloy was decreased by the addition of DMAB. After heat treatment at 400 ℃ for 1 h, the microhardness was increased from 612 to 947 kg.mm^-2 that was com- parative to Cr coating. The appearance of the as-plated coating was in f'me and slice grains and kept almost no change after heat treatment. In w=0.03 NaC1 solution the as-plated coating presented very good corrosion resistance. After the coating was heat-treated its corrosion resistance was enhanced.
文摘The process and properties of electroless plating Ni-W-B alloy have been studied. The results show that the deposits containing W and B are obtained, and the deposition rate of the bath is increased with increase of W content when a certain amount of sodium tungstate solution is added in the Ni-B bath. The Ni-W-B alloy is amorphous as deposition and its resistivity increases directly with the increase of W content in the coating, but decreases gradually with increasing the deposit thickness. XRD and SEM show that the distributions of W and B in the Ni-W-B alloy film are very uniform and dispersed without any segregation.
文摘The effects of rare earth (RE) on the composition, phase structures, surface morphologies and hardness of electrodeposited RE Ni W B SiC composite coatings were discussed. The results show that W and SiC contents in the coatings increase with the increase of RE in the bath. When RE is added in the coatings, the grains are refined and the trend of formation of amorphous coatings is increased. Moreover, the thermal stability of the RE Ni W B SiC composite coatings is enhanced. The hardness of the coatings is increased with the increase of heat treatment temperature, and it reaches the peak value when heated at 400 ℃. Besides, the hardness of the RE Ni W B SiC coatings is higher than that of the Ni W B SiC coatings.
文摘The components, surface and cross sectional morphologies, and the effects of heat treatment temperature on phase structure, hardness, abrasion resistance and oxidation resistance of pulse electrodeposition RE-Ni-W-B-B4C-PTFE composite coatings, were all investigated. The results show that W and B contents increase in the RE-Ni-W-B composite coating by using pulse electrodeposition. RE, PTFE and B4C particles can be co-deposited into the Ni-W-B composite coating, but the amount is very little. X-ray diffraction analysis displays that the RE-Ni-W-B-B4C-PTFE composite coating is mainly amorphous, partially crystallized as-deposited, but it turns into crystalline state and PTFE in the coatings will decompose after the heat treatment temperature is higher than 400℃. The hardness of the composite coating increases with increasing heat treatment temperature, it comes up to the highest value at 400℃. The oxidized film mass of the composite coating increases slowly when the oxidation temperature is lower than 500℃, but it increases linearly and sharply after the oxidation temperature is higher than 600℃.