All-solid-state lithium-ion batteries are lithiumion batteries with solid-state electrolytes instead of liquid electrolytes.They are hopeful in solving the safety problems of lithium-ion batteries,once their large cap...All-solid-state lithium-ion batteries are lithiumion batteries with solid-state electrolytes instead of liquid electrolytes.They are hopeful in solving the safety problems of lithium-ion batteries,once their large capacity and long life are achieved,they will have broad application prospects in the field of electric vehicles and large-scale energy storage.The working potential window of solid electrolytes is wider than that of liquid electrolytes,so high-voltage cathode materials could be used in all-solidstate lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries.The spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their highvoltage platforms.In this review,the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithiumrich cathode materials are introduced.More attentions are paid on recent research progress of conductivity and interface stability of these materials,in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries.Finally,the existing problems of their application in all-solid-state lithium-ion batteries are summarized,the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.展开更多
采用溶剂热法制备前驱体,后经350°C热处理,首次合成了空心结构的NiMn_2O_4微球以及不同含量氧化石墨烯包覆的Ni/Mn_3O_4/NiMn_2O_4@RGO复合材料.电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在5...采用溶剂热法制备前驱体,后经350°C热处理,首次合成了空心结构的NiMn_2O_4微球以及不同含量氧化石墨烯包覆的Ni/Mn_3O_4/NiMn_2O_4@RGO复合材料.电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 m A·g^(-1)电流密度下,100次循环后放电比容量保持在187.8 m Ah·g^(-1),且800 m A·g^(-1)电流密度下的可逆容量高达149.9 m Ah·g^(-1),明显优于NiMn_2O_4及其他石墨烯基复合材料.研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.展开更多
After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell pro...After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell program,including crystal structure,X-ray and neutron diffraction pattern,anomalous diffraction pattern and comparison of NiCoMn in different positions. The influence of order parameters on intensity of matrix and super-lattice diffraction lines has also been analyzed and the summarization and prospect have been made lastly.展开更多
基金supported by the National Basic Research Program of China (2009CB220100)the National Natural Science Foundation of China (51102018,21103011)+1 种基金the National High Technology Research and Development Program of China (2011AA11A235,SQ2010AA1123116001)the Science and Technology Project of State Grid Corporation (DG71-13-033)
文摘All-solid-state lithium-ion batteries are lithiumion batteries with solid-state electrolytes instead of liquid electrolytes.They are hopeful in solving the safety problems of lithium-ion batteries,once their large capacity and long life are achieved,they will have broad application prospects in the field of electric vehicles and large-scale energy storage.The working potential window of solid electrolytes is wider than that of liquid electrolytes,so high-voltage cathode materials could be used in all-solidstate lithium-ion batteries to get higher energy density and larger capacity by elevating the working voltage of the batteries.The spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithium-rich cathode materials can be expected to be applied to all-solid-state lithium-ion batteries as cathode materials due to their highvoltage platforms.In this review,the electrochemical properties and structures of spinel LiNi0.5Mn1.5O4material,layered Li–Ni–Co–Mn–O cathode materials and lithiumrich cathode materials are introduced.More attentions are paid on recent research progress of conductivity and interface stability of these materials,in order to improve their compatibility with solid electrolytes as cathode materials in all-solid-state lithium-ion batteries and fully improve the properties of all-solid-state batteries.Finally,the existing problems of their application in all-solid-state lithium-ion batteries are summarized,the main research directions are put forward and their application prospects in all-solid-state lithium-ion batteries are discussed.
基金supported by the National Natural Science Foundation of China (51572194)the national Key Research and Development Program of China (No. 2018YFB0105900)the Tianjin Major Program of New Materials Science and Technology (No. 16ZXCLGX00070)
文摘采用溶剂热法制备前驱体,后经350°C热处理,首次合成了空心结构的NiMn_2O_4微球以及不同含量氧化石墨烯包覆的Ni/Mn_3O_4/NiMn_2O_4@RGO复合材料.电化学性能测试表明,复合负极材料中,含25wt%还原氧化石墨烯的材料储钠性能最佳,其在50 m A·g^(-1)电流密度下,100次循环后放电比容量保持在187.8 m Ah·g^(-1),且800 m A·g^(-1)电流密度下的可逆容量高达149.9 m Ah·g^(-1),明显优于NiMn_2O_4及其他石墨烯基复合材料.研究指出,复合材料性能的提升得益于空心微球和还原的氧化石墨烯构成的特殊结构,一方面缩短了电子/离子传输距离,缓解了体积效应,另一方面高导电网络有效增强了活性物质利用率.
基金Sponsored by the National Key Research and Development Program(Grant No.2016YFB0100500)
文摘After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell program,including crystal structure,X-ray and neutron diffraction pattern,anomalous diffraction pattern and comparison of NiCoMn in different positions. The influence of order parameters on intensity of matrix and super-lattice diffraction lines has also been analyzed and the summarization and prospect have been made lastly.