This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface i...This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.展开更多
A two-step process of Ni silicide formed on bulk silicon, and the effects of different process conditions, including two-step RTA temperature and time, selective etching, and process protective nitrogen gas on the pro...A two-step process of Ni silicide formed on bulk silicon, and the effects of different process conditions, including two-step RTA temperature and time, selective etching, and process protective nitrogen gas on the properties of the Ni silicide film have been studied. In particular, the experiments show that the quality of NiSi film is very sensitive to the process conditions of the first RTA. The experiments also show that the quality of the film is very sensitive to the flow of protective nitrogen gas. The corresponding mechanisms are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60625403, 60806033, 90207004)the State Key Development Program for Basic Research of China (Grant No 2006CB302701)the NCET Program
文摘This paper reports that the Schottky barrier height modulation of NiSi/n-Si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique, which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by silicide- as-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 1015 cm-2 in comparison with the non-implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.
文摘A two-step process of Ni silicide formed on bulk silicon, and the effects of different process conditions, including two-step RTA temperature and time, selective etching, and process protective nitrogen gas on the properties of the Ni silicide film have been studied. In particular, the experiments show that the quality of NiSi film is very sensitive to the process conditions of the first RTA. The experiments also show that the quality of the film is very sensitive to the flow of protective nitrogen gas. The corresponding mechanisms are discussed.