The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CIS...The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.展开更多
The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft ...The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft symmetry energy, where the non-Newtonian gravity proposed in the grand unification theories is also considered. Constrained by the observations of the masses and the spin frequencies for neutron stars, the boundary of the r-mode instability window for a canonical neutron star is obtained, and the results show that the observed neutron stars are all outside the instability window, which is consistent with the theoretical expectation. In addition, an upper limit of the non-Newtonian gravity parameters is also given.展开更多
Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncert...Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.展开更多
Integer numbers of natural units (Planck units) to express Newton's inverse square law of gravitation in terms of quantum mechanical probabilities are used. The strong nuclear force between two coupled nucleons is ...Integer numbers of natural units (Planck units) to express Newton's inverse square law of gravitation in terms of quantum mechanical probabilities are used. The strong nuclear force between two coupled nucleons is derived, the minds of giants such as Newton and Einstein are met. There is a considerable continuing effort directed for the understanding of gravity and the constants of nature, last century's legacy of Arthur Stanley Eddington.展开更多
Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an inco...Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an incorrect description of interactions in the Theory of Relativity. In reality, with the relative motion of interacting particles, their interactions force changes, and not their mass. It is shown that models of such stellar associations as globular clusters and galaxies should be created on the basis of the substance that exists on Earth. The second peer-reviewed paper proposes to create LIGO on the Moon. It is shown that gravitational waves do not exist. They were introduced to explain the excessive rotation of the Mercury’s perihelion. However, the excessive rotation of the Mercury’s perihelion is due to the Sun oblateness. The paper shows that gravitational waves, the Big Bang, the expanding Universe, dark matter, dark energy, etc. appeared on the basis of unfounded hypotheses. The urgent task is to eliminate them from science.展开更多
By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula ca...By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula can also describe the motion of object with mass in gravity field such as the perihelion precession of the Mercury. The space-time singularity in the Einstein’s theory of gravity becomes the original point r = 0 in the Newtonian formula of gravity. The singularity problem of gravity in curved space-time is eliminated thoroughly. When the formula is used to describe the expansive universe, the revised Friedmann equation of cosmology is obtained. Based on it, the high red-shift of Ia supernova can be explained well. We do not need the hypotheses of the universe accelerating expansion and dark energy again. It is also unnecessary for us to assume that non-baryon dark material is 5 - 6 times more than normal baryon material in the universe if they really exist. The problem of the universal age can also be solved well. The theory of gravity returns to the traditional form of dynamic description and becomes normal one. The revised equation can be taken as the foundation of more rational cosmology.展开更多
Jeans mass is regarded as a crucial factor in the study of nebula collapse.Astronomical data shows that Jeans mass is larger in theory than it is in observation.Someone mentioned that Jeans mass can be modified by usi...Jeans mass is regarded as a crucial factor in the study of nebula collapse.Astronomical data shows that Jeans mass is larger in theory than it is in observation.Someone mentioned that Jeans mass can be modified by using the generalized uncertainty principle(GUP).However,different physical backgrounds lead to different forms of GUP expression.In order to make the theoretical values of Jeans mass and its observed values match better,we use three distinct types of GUPs to correct Jeans mass in this paper.We find that the corrected Jeans masses are smaller than the uncorrected ones,where the Pedram corrected Jeans mass is the minimum and is close to the observed value.In addition,we consider the impact of temperature T and the GUP parameters(η,βandγ)for the corrected Jeans mass.展开更多
5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss differen...5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.展开更多
Starting from the classical Newton inverse square law of gravitation we arrive at a modified Newtonian gravity in the spirit of the work of Milgrom-Bekenstein pioneering work. This is achieved by injecting the needed ...Starting from the classical Newton inverse square law of gravitation we arrive at a modified Newtonian gravity in the spirit of the work of Milgrom-Bekenstein pioneering work. This is achieved by injecting the needed quantum mechanical dissection of special relativity into Newton’s law via the modified energy mass relationship which transforms Einstein’s famous formula?from a smooth four dimensional space to a rugged fractal-like spacetime manifold. The confidence in the present result stems not only from the consistency of the mathematical scheme but also from agreement with the general direction of cosmological measurements and observations.展开更多
The properties of strange star matter are studied in the equivparticle model with inclusion of non-Newtonian gravity. It is found that the inclusion of non-Newtonian gravity makes the equation of state stiffer if Wit...The properties of strange star matter are studied in the equivparticle model with inclusion of non-Newtonian gravity. It is found that the inclusion of non-Newtonian gravity makes the equation of state stiffer if Witten's conjecture is true. Correspondingly, the maximum mass of strange stars becomes as large as two times the solar mass, and the maximum radius also becomes bigger. The coupling to boson mass ratio has been constrained within the stability range of strange quark matter.展开更多
Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravi...Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravity requires a modification or extension if no dark matter component is introduced in the description of gravitational phenomena. The result is directly obtained with the assumption that a fundamental constant of nature with dimensions of acceleration needs to be introduced into gravitational interactions. This in turn allows for modifications or extensions of the equipartion law and/or the holographic principle. In other words, MOND-like phenomenology can be reproduced when appropriate generalised concepts at the thermodynamical level of space and/or at the holographic principle are introduced. Thermodynamical modifications are reflected in extensions to the equipartition law which occur when the temperature of the system drops below a critical value, equals to Unruh’s temperature evaluated at the acceleration constant scale introduced for the description of the gravitational phenomena. Our calculations extend the ones by [1] in which Newtonian gravity is shown to be an emergent phenomenon, and together with it reinforces the idea that gravity at all scales is emergent.展开更多
While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a com...While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination of particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories: MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider the effects of dark energy (DE) in terms of a cosmological constant.展开更多
We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we...We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we assume NFW profile and core-modified profile for the dark halo,respectively.For the modified Newtonian dynamics models,we discuss Milgrom's MOND theory with two different interpolation functions,the standard and the simple interpolation functions.For the modified gravity,we focus on Moffat's MSTG theory.We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies.We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model.It is found that none of the six models can fit all the galaxy rotation curves well.Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter.MOND can fit the largest number of galaxies,and only one galaxy can be best fitted by the MSTG model.Core-modified model fits about half the LSB galaxies well,but no HSB galaxies,while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies.This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well.展开更多
The eigen-frequencies of the axial w-modes of neutron star described by a super-soft equation of state(EOS) are investigated,by considering the non-Newtonian gravity.The results show that at the same stellar mass,the ...The eigen-frequencies of the axial w-modes of neutron star described by a super-soft equation of state(EOS) are investigated,by considering the non-Newtonian gravity.The results show that at the same stellar mass,the frequencies of wI and wI2 for our model are lower than that of the typical EOSs(such as APR); and the frequencies increase with the stellar masses,which is contrary to that of the typical EOSs.These characters may provide a probe to testify the super soft symmetry energy and the non-Newtonian gravity in the future.Moreover,our model also has the universal behavior of the mass-scaled eigen-frequencies as a function of the compactness.展开更多
文摘The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10947023 and 11275073the Fundamental Research Funds for the Central Universities under Grant No. 2012ZZ0079the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The Chandrasekhar-Friedmann-Schutz (CFS) instabilities of r-modes for canonical neutron stars (1.4 Me) with rigid crusts are investigated by using an equation of state of asymmetric nuclear matter with super-soft symmetry energy, where the non-Newtonian gravity proposed in the grand unification theories is also considered. Constrained by the observations of the masses and the spin frequencies for neutron stars, the boundary of the r-mode instability window for a canonical neutron star is obtained, and the results show that the observed neutron stars are all outside the instability window, which is consistent with the theoretical expectation. In addition, an upper limit of the non-Newtonian gravity parameters is also given.
文摘Although Newtonian gravity and general relativity predicted the precession of Mercury perihelion historically, many improved methods continue to predict the precession of Mercury during recent decades of years. Uncertainties in various predictions and observations suggest that the attribution of Mercury’s precession is still not well understood. This paper argues that the cause of Mercury’s precession is not gravity, but the inertia of material motion left over from the formation of the solar system. According to this inertia theory, the planetary precession is associated with the ratio of total mass-energy density of the system to the mass-energy of the Sun and its change over time. If other factors are not changed with time, the perihelion precession of planets per orbit is proportional to his distance relative to the Sun. The conclusions of this paper can provide more effective factor considerations for the complete description of various astronomical events and phenomena using general relativity equations.
文摘Integer numbers of natural units (Planck units) to express Newton's inverse square law of gravitation in terms of quantum mechanical probabilities are used. The strong nuclear force between two coupled nucleons is derived, the minds of giants such as Newton and Einstein are met. There is a considerable continuing effort directed for the understanding of gravity and the constants of nature, last century's legacy of Arthur Stanley Eddington.
文摘Two reviews of papers are considered. The first paper for a galaxy model uses matter consisting of neutrinos, bosons and other similar particles. It is shown that these particles were introduced as a result of an incorrect description of interactions in the Theory of Relativity. In reality, with the relative motion of interacting particles, their interactions force changes, and not their mass. It is shown that models of such stellar associations as globular clusters and galaxies should be created on the basis of the substance that exists on Earth. The second peer-reviewed paper proposes to create LIGO on the Moon. It is shown that gravitational waves do not exist. They were introduced to explain the excessive rotation of the Mercury’s perihelion. However, the excessive rotation of the Mercury’s perihelion is due to the Sun oblateness. The paper shows that gravitational waves, the Big Bang, the expanding Universe, dark matter, dark energy, etc. appeared on the basis of unfounded hypotheses. The urgent task is to eliminate them from science.
文摘By transforming the geodesic equation of the Schwarzschild solution of the Einstein’s equation of gravity field to flat space-time for description, the revised Newtonian formula of gravity is obtained. The formula can also describe the motion of object with mass in gravity field such as the perihelion precession of the Mercury. The space-time singularity in the Einstein’s theory of gravity becomes the original point r = 0 in the Newtonian formula of gravity. The singularity problem of gravity in curved space-time is eliminated thoroughly. When the formula is used to describe the expansive universe, the revised Friedmann equation of cosmology is obtained. Based on it, the high red-shift of Ia supernova can be explained well. We do not need the hypotheses of the universe accelerating expansion and dark energy again. It is also unnecessary for us to assume that non-baryon dark material is 5 - 6 times more than normal baryon material in the universe if they really exist. The problem of the universal age can also be solved well. The theory of gravity returns to the traditional form of dynamic description and becomes normal one. The revised equation can be taken as the foundation of more rational cosmology.
基金the National Natural Science Foundation of China(Grant No.12265007)。
文摘Jeans mass is regarded as a crucial factor in the study of nebula collapse.Astronomical data shows that Jeans mass is larger in theory than it is in observation.Someone mentioned that Jeans mass can be modified by using the generalized uncertainty principle(GUP).However,different physical backgrounds lead to different forms of GUP expression.In order to make the theoretical values of Jeans mass and its observed values match better,we use three distinct types of GUPs to correct Jeans mass in this paper.We find that the corrected Jeans masses are smaller than the uncorrected ones,where the Pedram corrected Jeans mass is the minimum and is close to the observed value.In addition,we consider the impact of temperature T and the GUP parameters(η,βandγ)for the corrected Jeans mass.
文摘5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.
文摘Starting from the classical Newton inverse square law of gravitation we arrive at a modified Newtonian gravity in the spirit of the work of Milgrom-Bekenstein pioneering work. This is achieved by injecting the needed quantum mechanical dissection of special relativity into Newton’s law via the modified energy mass relationship which transforms Einstein’s famous formula?from a smooth four dimensional space to a rugged fractal-like spacetime manifold. The confidence in the present result stems not only from the consistency of the mathematical scheme but also from agreement with the general direction of cosmological measurements and observations.
基金support from the National Natural Science Foundation of China(Grant Nos.11575190,11475110 and 11135011)
文摘The properties of strange star matter are studied in the equivparticle model with inclusion of non-Newtonian gravity. It is found that the inclusion of non-Newtonian gravity makes the equation of state stiffer if Witten's conjecture is true. Correspondingly, the maximum mass of strange stars becomes as large as two times the solar mass, and the maximum radius also becomes bigger. The coupling to boson mass ratio has been constrained within the stability range of strange quark matter.
文摘Under natural assumptions on the thermodynamic properties of space and time with the holo-graphic principle, we reproduce a MOND-like behaviour of gravity on particular scales of mass and length, where Newtonian gravity requires a modification or extension if no dark matter component is introduced in the description of gravitational phenomena. The result is directly obtained with the assumption that a fundamental constant of nature with dimensions of acceleration needs to be introduced into gravitational interactions. This in turn allows for modifications or extensions of the equipartion law and/or the holographic principle. In other words, MOND-like phenomenology can be reproduced when appropriate generalised concepts at the thermodynamical level of space and/or at the holographic principle are introduced. Thermodynamical modifications are reflected in extensions to the equipartition law which occur when the temperature of the system drops below a critical value, equals to Unruh’s temperature evaluated at the acceleration constant scale introduced for the description of the gravitational phenomena. Our calculations extend the ones by [1] in which Newtonian gravity is shown to be an emergent phenomenon, and together with it reinforces the idea that gravity at all scales is emergent.
文摘While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination of particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories: MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider the effects of dark energy (DE) in terms of a cosmological constant.
基金Supported by Fundamental Research Funds for the Central Universities(106112016CDJCR301206)National Natural Science Fund of China(11305181,11547305 and 11603005)Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(Y5KF181CJ1)
文摘We compare six models(including the baryonic model,two dark matter models,two modified Newtonian dynamics models and one modified gravity model) in accounting for galaxy rotation curves.For the dark matter models,we assume NFW profile and core-modified profile for the dark halo,respectively.For the modified Newtonian dynamics models,we discuss Milgrom's MOND theory with two different interpolation functions,the standard and the simple interpolation functions.For the modified gravity,we focus on Moffat's MSTG theory.We fit these models to the observed rotation curves of 9 high-surface brightness and 9 low-surface brightness galaxies.We apply the Bayesian Information Criterion and the Akaike Information Criterion to test the goodness-of-fit of each model.It is found that none of the six models can fit all the galaxy rotation curves well.Two galaxies can be best fitted by the baryonic model without involving nonluminous dark matter.MOND can fit the largest number of galaxies,and only one galaxy can be best fitted by the MSTG model.Core-modified model fits about half the LSB galaxies well,but no HSB galaxies,while the NFW model fits only a small fraction of HSB galaxies but no LSB galaxies.This may imply that the oversimplified NFW and core-modified profiles cannot model the postulated dark matter haloes well.
基金Supported by National Natural Science Foundation of China(Nos.10947023,11275073 and 11205061)Fundamental Research Funds for the Central University,China(No.2012ZZ0079)sponsored by SRF for ROCS,SEM
文摘The eigen-frequencies of the axial w-modes of neutron star described by a super-soft equation of state(EOS) are investigated,by considering the non-Newtonian gravity.The results show that at the same stellar mass,the frequencies of wI and wI2 for our model are lower than that of the typical EOSs(such as APR); and the frequencies increase with the stellar masses,which is contrary to that of the typical EOSs.These characters may provide a probe to testify the super soft symmetry energy and the non-Newtonian gravity in the future.Moreover,our model also has the universal behavior of the mass-scaled eigen-frequencies as a function of the compactness.