期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于加权Word2Vec和TextCNN的新闻文本分类
被引量:
1
1
作者
廖运春
舒坚
《长江信息通信》
2022年第9期32-35,共4页
随着网络和各类社交媒体的盛行,越来越多的文本信息通过互联网呈现在人们面前。对于海量的文本数据,自然语言处理技术变得越来越实用,新闻文本分类便是其中一项重要的任务,其对制定新闻检索策略、新闻推荐、社会舆情监控等具有积极作用...
随着网络和各类社交媒体的盛行,越来越多的文本信息通过互联网呈现在人们面前。对于海量的文本数据,自然语言处理技术变得越来越实用,新闻文本分类便是其中一项重要的任务,其对制定新闻检索策略、新闻推荐、社会舆情监控等具有积极作用。文章通过分析文本表示模型与分类模型的研究现状,提出一种基于加权Word2Vec和TextCNN的新闻文本分类方法,在新闻文本多分类数据上进行实验。从实验结果上来看,在文本表示模型中,该文方法比TF-IDF模型、Word2Vec模型以及随机词嵌入模型在精确率、召回率和F1值上均有提高;在文本分类模型中,文章使用的TextCNN模型要比传统的机器学习模型以及循环神经网络模型在分类效果以及模型性能方面表现更出色。
展开更多
关键词
新闻文本分类
自然语言处理
文本表示
文本分类
下载PDF
职称材料
题名
基于加权Word2Vec和TextCNN的新闻文本分类
被引量:
1
1
作者
廖运春
舒坚
机构
南昌航空大学软件学院
出处
《长江信息通信》
2022年第9期32-35,共4页
基金
国家自然科学基金项目(61762065)。
文摘
随着网络和各类社交媒体的盛行,越来越多的文本信息通过互联网呈现在人们面前。对于海量的文本数据,自然语言处理技术变得越来越实用,新闻文本分类便是其中一项重要的任务,其对制定新闻检索策略、新闻推荐、社会舆情监控等具有积极作用。文章通过分析文本表示模型与分类模型的研究现状,提出一种基于加权Word2Vec和TextCNN的新闻文本分类方法,在新闻文本多分类数据上进行实验。从实验结果上来看,在文本表示模型中,该文方法比TF-IDF模型、Word2Vec模型以及随机词嵌入模型在精确率、召回率和F1值上均有提高;在文本分类模型中,文章使用的TextCNN模型要比传统的机器学习模型以及循环神经网络模型在分类效果以及模型性能方面表现更出色。
关键词
新闻文本分类
自然语言处理
文本表示
文本分类
Keywords
newstext
classification
Natural
language
process
Text
representation
Text
classification
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于加权Word2Vec和TextCNN的新闻文本分类
廖运春
舒坚
《长江信息通信》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部