The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against ...The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against fission in the 1n-channel of these SHN is made. The present calculations consistently take the neutron separation energies and shell correction energies from the calculated results of the finite range droplet model which predicts an island of stability of SHN around Z = 115 and N = 179. It turns out that this island of stability persists for excited SHN in the sense that the calculated survival probabilities in the 1n-channel of excited SHN at the optimal excitation energy are maximized around Z = 115 and N = 179. This indicates that the survival probability in the 1n-channel is mainly determined by the nuclear shell effects.展开更多
Photofission fragments mass yield for^(232)Th,^(234;238) U,^(237) Np, and^(239;240;242) Pu isotopes are investigated.The calculations are done using a developed approach based on Gorodisskiy's phenomenological for...Photofission fragments mass yield for^(232)Th,^(234;238) U,^(237) Np, and^(239;240;242) Pu isotopes are investigated.The calculations are done using a developed approach based on Gorodisskiy's phenomenological formalism. The Gorodisskiy's method is developed to be applied for the neutron-induced fission. Here we revised it for application to photofission. The effect of emitted neutron prior to fission on the fission fragment mass yields has also been studied. The peak-to-valley ratio is extracted for the240 Pu isotope as a function of energy. Obtained results of the present formalism are compared with the available experimental data. Satisfactory agreement is achieved between the results of present approach and the experimental data.展开更多
The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures ...The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.展开更多
The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy...The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.展开更多
The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition o...The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.展开更多
Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of th...Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of the pre-neutronemission mass distributions is described by an exponential form based on the newly measured data. The energy dependence of evaporation neutrons before scission is also considered, which plays a crucial role in the reasonable description of the mass distributions. The measured ^238U(n, f) are reasonably well reproduced up to 60 predicted using this approach. data of the pre-neutron-emission mass distributions for reaction MeV. The mass distributions at unmeasured energies are also展开更多
The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutron...The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutronemission mass distributions are described by the exponential expressions based on the newly measured data. The energy dependence of evaporation neutrons before scission, which plays a crucial role for the reasonable description of the mass distribution, is also considered. Both the double-humped and triple-humped shape of the measured pre-neutronemission mass distributions for reaction232Th(n, f) are reasonably well reproduced at incident energies up to 60 MeV.The mass distributions at unmeasured energies and the critical energies at which the humped pre-neutron-emission mass distributions are transformed into each other are also predicted.展开更多
Fission-Track Dating (FTD) has been developed as a useful technique for geological studies. Parent elements are measured by counting 235 U tracks induced by thermal neutrons. If insufficient thermalization occurs, fis...Fission-Track Dating (FTD) has been developed as a useful technique for geological studies. Parent elements are measured by counting 235 U tracks induced by thermal neutrons. If insufficient thermalization occurs, fission of 238 U and 232 Th will be induced, and further measurement error will be introduced. Therefore, whether the neutrons are well thermalized or not will affect the FTD results. Due to requirement of safe operation, the 101 reactor was terminated in 2007. By using the 492 reactor as the new thermal neutron reactor, our present paper will attempt to study the feasibility and the potential influence on FTD. By irradiating monitor glass SRM612 and CN5 in pairs, we will study the thermalization situation of the 492 reactor. Irradiated data show that thermal neutrons are not evenly distributed either in horizontal or in vertical dimension. Especially, horizontal heterogeneity is obvious. But we discovered that proper irradiation position in the reactor can meet the requirement of FTD. Under the current irradiation condition, we calculated and assessed the insufficient thermalization effects on determining fission-track ages. We found that the difference between the 232 Th/ 238 U ratios of samples and standards is the main factor to the experiment results. The results will not be affected if the 232 Th/ 238 U value of samples is equal to the standard samples. However, if the 232 Th/ 238 U ratio is larger than that of the standards, the results will be smaller than actual ages. Comparatively, the ages will be more than expected if the 232 Th/ 238 U ratio is less. Therefore, to reduce the irradiation error, we suggest either locating the position of irradiation strictly, or minimizing the influence of lateral heterogeneity by reducing the amount of each sample package. Additionally, accuracy of the experimental results can be improved by increasing standard samples to adjust ζ value and using the monitor of standard glass SRM612 and CN5 together.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10705014, 10775012,10875157, 10975100 and 10979066)the Major State Basic Research Development Program of China (Grant No. 2007CB815000) +1 种基金Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. KJCX2-EW-N01 and KJCX2-YW-N32)supported by Super computing Center, CNIC of Chinese Academy of Sciences
文摘The stability of excited superheavy nuclei (SHN) with 100 Z 134 against neutron emission and fission is investigated by using a statistical model. In particular, a systematic study of the survival probability against fission in the 1n-channel of these SHN is made. The present calculations consistently take the neutron separation energies and shell correction energies from the calculated results of the finite range droplet model which predicts an island of stability of SHN around Z = 115 and N = 179. It turns out that this island of stability persists for excited SHN in the sense that the calculated survival probabilities in the 1n-channel of excited SHN at the optimal excitation energy are maximized around Z = 115 and N = 179. This indicates that the survival probability in the 1n-channel is mainly determined by the nuclear shell effects.
文摘Photofission fragments mass yield for^(232)Th,^(234;238) U,^(237) Np, and^(239;240;242) Pu isotopes are investigated.The calculations are done using a developed approach based on Gorodisskiy's phenomenological formalism. The Gorodisskiy's method is developed to be applied for the neutron-induced fission. Here we revised it for application to photofission. The effect of emitted neutron prior to fission on the fission fragment mass yields has also been studied. The peak-to-valley ratio is extracted for the240 Pu isotope as a function of energy. Obtained results of the present formalism are compared with the available experimental data. Satisfactory agreement is achieved between the results of present approach and the experimental data.
基金Supported by IAEA-CRP(15905)the State Key Laboratory of Nuclear Physics and Technology,Peking University(SKL-NPT)
文摘The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.
基金Supported by the National Key Research and Development Plan(2016YFA0401603)the National Natural Science Foundation of China(11675155,11790321)Foundation of President of China Academy of Engineering Physics(YZJLX2016003)。
文摘The neutron total cross section data of^(9)Be are essential in the nuclear structure model research of light nuclei and nuclear power installations.The neutron total cross section of^(9)Be in the 0.3 eV−120 MeV energy region has been measured using time-of-flight and transmission methods with the Neutron Total Cross Sectional Spectrometer(NTOX)based on the multi-cell fast fission chamber at the China Spallation Neutron Source(CSNS)-Back-n white neutron source(Back-n).The fission count-neutron energy distributions of ^(235)U and ^(238)U without samples and with Be samples with three thicknesses were measured in the double-bunch operation mode for a beam power of 100 kW.The Bayesian method was used to eliminate the influence of the double-bunch problem on neutron measurement in the energy region above 10 keV.The neutron total cross section of^(9)Be results was consistent with ENDF/B-VIII.0 evaluation library data in the 0.3 eV−20 MeV energy region.In the energy ranges of 0.3 eV to 10 keV and 0.01 to 20 MeV,the deviations between our results and the evaluation results of ENDF/B-VIII.0 were within 2.5%and 15%,respectively.In the resonance energy region,the measured resonance energies in our experiment were 0.63,0.82,and 2.8 MeV,respectively.The results showed that the total cross section uncertainties of three Be samples were within 2.2%in the energy region below 1 MeV.The total cross section uncertainty of 30 mm Be from ^(235)U was the smallest and less than 5%in the energy region of 0.3 eV−120 MeV.The results of this experiment can provide technical support for further data analysis and related nuclear data evaluation.
基金Supported by National Natural Science Foundation of China(11205246,91126010,91226102)
文摘The prompt fission neutron spectra for the neutron-induced fission of 233U for low energy neutrons (below 6 MeV) are calculated using nuclear evaporation theory with a semi-empirical method, in which the partition of the total excitation energy between the fission fragments for the nth+233U fission reactions is determined by the available experimental and evaluation data. The calculated prompt fission neutron spectra agree well with the experimental data. The proportions of high-energy neutrons of prompt fission neutron spectrum versus incident neutron energies are investigated with the theoretical spectra, and the results are consistent with the systematics. The semi-empirical method could be a useful tool for the prompt evaluation of fission neutron spectra.
基金Supported by Guangxi University Science and Technology Research Projects(2013ZD007)Guangxi Natural Science Foundation(2012GXNSFAA053008)National Natural Science Foundation of China(11265004)
文摘Abstract: The pre-neutron-emission mass distributions for reaction ^238U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of the pre-neutronemission mass distributions is described by an exponential form based on the newly measured data. The energy dependence of evaporation neutrons before scission is also considered, which plays a crucial role in the reasonable description of the mass distributions. The measured ^238U(n, f) are reasonably well reproduced up to 60 predicted using this approach. data of the pre-neutron-emission mass distributions for reaction MeV. The mass distributions at unmeasured energies are also
基金Supported by Guangxi University Science and Technology Research Projects under Grant No.2013ZD007Guangxi Natural Science Foundation under Grant No.2012GXNSFAA053008+1 种基金National Natural Science Foundation of China under Grant No.11265004the Th-based Molten Salt Reactor Power System of the Strategic Pioneer Science and Technology Projects from the Chinese Academy of Sciences
文摘The pre-neutron-emission mass distributions for reaction232Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutronemission mass distributions are described by the exponential expressions based on the newly measured data. The energy dependence of evaporation neutrons before scission, which plays a crucial role for the reasonable description of the mass distribution, is also considered. Both the double-humped and triple-humped shape of the measured pre-neutronemission mass distributions for reaction232Th(n, f) are reasonably well reproduced at incident energies up to 60 MeV.The mass distributions at unmeasured energies and the critical energies at which the humped pre-neutron-emission mass distributions are transformed into each other are also predicted.
基金supported by State Key Laboratory of Earthquake Dynamics (Grant No.LED2009A05)National Natural Science Foundation of China (Grant No.41030317)
文摘Fission-Track Dating (FTD) has been developed as a useful technique for geological studies. Parent elements are measured by counting 235 U tracks induced by thermal neutrons. If insufficient thermalization occurs, fission of 238 U and 232 Th will be induced, and further measurement error will be introduced. Therefore, whether the neutrons are well thermalized or not will affect the FTD results. Due to requirement of safe operation, the 101 reactor was terminated in 2007. By using the 492 reactor as the new thermal neutron reactor, our present paper will attempt to study the feasibility and the potential influence on FTD. By irradiating monitor glass SRM612 and CN5 in pairs, we will study the thermalization situation of the 492 reactor. Irradiated data show that thermal neutrons are not evenly distributed either in horizontal or in vertical dimension. Especially, horizontal heterogeneity is obvious. But we discovered that proper irradiation position in the reactor can meet the requirement of FTD. Under the current irradiation condition, we calculated and assessed the insufficient thermalization effects on determining fission-track ages. We found that the difference between the 232 Th/ 238 U ratios of samples and standards is the main factor to the experiment results. The results will not be affected if the 232 Th/ 238 U value of samples is equal to the standard samples. However, if the 232 Th/ 238 U ratio is larger than that of the standards, the results will be smaller than actual ages. Comparatively, the ages will be more than expected if the 232 Th/ 238 U ratio is less. Therefore, to reduce the irradiation error, we suggest either locating the position of irradiation strictly, or minimizing the influence of lateral heterogeneity by reducing the amount of each sample package. Additionally, accuracy of the experimental results can be improved by increasing standard samples to adjust ζ value and using the monitor of standard glass SRM612 and CN5 together.