We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineu...We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GWm th were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944± 0.007(stat.) ± 0.003(syst.). An analysis of the relative rates in six detectors finds sin22θ13=0.089± 0.010(stat.)±0.005(syst.) in a three-neutrino framework.展开更多
After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its ...After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss differen...5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.展开更多
Based on the recent association of IceCube TeV and PeV neutrino events with gamma-ray bursts(GRBs)by considering the Lorentz violation of neutrinos,we provide a new estimate on the GRB neutrino flux with a more signif...Based on the recent association of IceCube TeV and PeV neutrino events with gamma-ray bursts(GRBs)by considering the Lorentz violation of neutrinos,we provide a new estimate on the GRB neutrino flux with a more significant result compared to the previous constraint by the IceCube Collaboration.Among these 24 neutrino“shower”events above 60 TeV,12 events are associated with GRBs.Such a result is compatible with the prediction from GRB fireball models.Analysis of track events provides a consistent result with the shower events to associate high energy cosmic neutrinos with GRBs under the same Lorentz violation features of neutrinos.We also make a background estimation and reveal GRBs as a significant source for the ultra-high energy IceCube neutrino events.Our work supports the Lorentz violation and CPT-violation of neutrinos,indicating new physics beyond relativity.展开更多
This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for s...This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.展开更多
We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of...We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.展开更多
Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed speci...Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed special and general theories of relativity and creatively promoted our perspective of spacetime from Newton’s absolute space and time to his relative spacetime. Based on redshift and distance measurements of galaxies and distant type Ia supernovae, cosmologists have suggested that our universe is expanding at an ever-increasing rate driven by a mysterious dark energy. Recently, the author has proposed that spacetime is dynamic. Spacetime is said to be absolute if it is independent of matter and motion, relative if it is affected by matter and motion, and dynamic if it mutually interacts with matter and motion. In dynamic spacetime, not only do matter and motion distort spacetime, but they are also affected by the distorted spacetime. Spacetime to be dynamic is a consequence of a deep insight to Mach’s principle, which tells us that the inertia of an object results from the gravitational interaction by the rest of the universe. Reaction of dynamic spacetime on a traveling light causes light redshift. Reaction of dynamic spacetime on a fast moving neutrino slows down the neutrino. The derived redshift-distance relation perfectly explained the measurements of distant type Ia supernovae and gamma ray bursts (GRBs) and also naturally obtained Hubble’s law as an approximate relation at small redshift. This explanation of cosmological redshift as the opposition of dynamic spacetime does not mandate the universe to be expanding and accelerating, so that it does not need the universe to be initiated from a Big Bang and driven out mainly by a mysterious dark energy. Extremely slowed down neutrinos in dynamic spacetime, when they are gravitationally trapped around clusters, galaxies, and any celestial objects, would play the role of dark matter in explaining the velocity-radius relations of galaxy’s or clust展开更多
We constrain two dynamical dark energy models that are parametrized by the logarithm form of and the oscillating form of . Comparing with the Chevallier-Polarski-Linder (CPL) model, the two parametrizations for dark e...We constrain two dynamical dark energy models that are parametrized by the logarithm form of and the oscillating form of . Comparing with the Chevallier-Polarski-Linder (CPL) model, the two parametrizations for dark energy can explore the whole evolution history of the universe properly. Using the current mainstream observational data including the cosmic microwave background data and the baryon acoustic oscillation data as well as the type Ia supernovae data, we perform the X<sup>2</sup> statistic analysis to global fit these models, finding that the logarithm parametrization and the oscillating parameterization are almost as well as the CPL scenario in fitting these data. We make a comparison for the impacts of the dynamical dark energy on the cosmological constraints on the total mass of active neutrinos. We find that the logarithm parametrization and the oscillating parameterization can increase the fitting values of Σm<sub>v</sub>. Looser constraints on Σm<sub>v</sub> are obtained in the logarithm and oscillating models than those derived in the CPL model. Consideration of the possible mass ordering of neutrinos reveals that the most stringent constraint on Σm<sub>v</sub> appears in the degenerate hierarchy case.展开更多
In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological...In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.展开更多
This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these re...This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.展开更多
The Standard Model of particle physics involves twelve fundamental fermions, treated as point particles, in four charge states. However, the Standard Model does not explain why only three fermions are in each charge s...The Standard Model of particle physics involves twelve fundamental fermions, treated as point particles, in four charge states. However, the Standard Model does not explain why only three fermions are in each charge state or account for neutrino mass. This holographic analysis treats charged Standard Model fermions as spheres with mass 0.187 g/cm<sup>2</sup> times their surface area, using the proportionality constant in the holographic relation between mass of the observable universe and event horizon radius. The analysis requires three Standard Model fermions per charge state and relates up quark and down quark masses to electron mass. Holographic analysis specifies electron mass, to six significant figures, in terms of fundamental constants α,ℏ,G,Λ and Ω Λ . Treating neutrinos as spheres and equating electron neutrino energy density with cosmic vacuum energy density predicts neutrino masses consistent with experiment.展开更多
By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac...By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.展开更多
The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. ...The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. During this period, Einstein was writing his field equation of general relativity (1923), Fermi, in a famous letter to Pauli, proposed the neutrino in beta decay theory (1930), Chadwick found the neutron, that granted him the Nobel price (1935) and Hubble (1929) proved that the Universe was expanding. As a result of that golden age, we remain with a lot of unsolved questions, due to the poor knowledge of the nature of the strong Nuclear Interaction of Gravity that controls the whole Universe. We have made an investigation on the nature of nuclear bond and gravitational attraction on the basis of available data and as a follow-up of Fermi famous research on Neutrino. Using this background, we hope to be able to explain or give some light to the evolution of stars, to the strange objects and phenomena captured or perceived by astronomers in the sky and speculated by theoretical physicists.展开更多
Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary partic...Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.展开更多
基金Supported by the Ministry of Science and Technology of Chinathe United States Department of Energy+15 种基金the Chinese Academy of Sciencesthe National Natural Science Foundation of Chinathe Guangdong provincial governmentthe Shenzhen municipal governmentthe China Guangdong Nuclear Power GroupShanghai Laboratory for Particle Physics and Cosmologythe Research Grants Council of the Hong Kong Special Administrative Region of ChinaUniversity Development Fund of The University of Hong Kongthe MOE program for Research of Excellence at NTU, NCTUNSC fund support from Taipeithe U.S. National Science Foundationthe Alfred P. Sloan Foundationthe Ministry of EducationYouth and Sports of the Czech Republicthe Czech Science Foundationthe Joint Institute of Nuclear Research in Dubna,Russia
文摘We report an improved measurement of the neutrino mixing angle θ13 from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for sin22θ13 with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GWm th were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is 0.944± 0.007(stat.) ± 0.003(syst.). An analysis of the relative rates in six detectors finds sin22θ13=0.089± 0.010(stat.)±0.005(syst.) in a three-neutrino framework.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA10010200)the Tsinghua University Initiative Scientific Research Program(Grant No.20131089288)
文摘After the success of the Daya Bay experiment, the Jiangmen Underground Neutrino Observatory (JUNO) was launched to measure neutrino-mass hierarchy and oscillation parameters and to study other neutrino physics. Its central detector is set for antineutrinos from reactors, the Earth, the atmosphere, and the Sun. The main requirements of the central detector are con- tainment of 20 kt of liquid scintillator, as the target mass, and 3% energy resolution. It is about a ball-shape detector of 38.5 m with -75% coverage of PMT on its inner surface. The design of such a huge detector is a big challenge because it must meet the requirements for several different types of physics measurement and possess the feasibility and reliability in its structure and engineering, all at reasonable time and cost. One option for the JUNO central detector is a hyper-scale acrylic ball sub- merged in the water to shield the background. This paper proposes a structural scheme for such an acrylic ball that is supported by a stainless-steel truss, inspired by point-supported glass-curtain walls in civil engineering. The preliminary design of the scheme is completed and verified by finite element (FE) method using ABAQUS. FE analysis shows that the scheme can con- trol the stress level of the acrylic ball within the limit of 5 to 10 MPa, in accordance with the demand of the design objective of the central detector. The scheme is of outstanding global stability and allows various chocces on local connections. We prove that the scheme is of good feasibility and should be a reasonable option for the central detector.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘5D World-Universe Model is based on the decisive role of the Medium of the World composed of massive particles: protons, electrons, photons, neutrinos, and dark matter particles. In this manuscript we discuss different aspects of the gravitation: measured values of the Newtonian parameter of Gravitation and different Gravitational effects (gravitational lensing, cosmological redshift, gravitational deflection of light and gravitational refraction, proposed in the present paper). We show inter-connectivity of all cosmological parameters and provide a mathematical framework that allows direct calculation of them based on the value of the gravitational parameter. We analyze the difference between Electromagnetism and Gravitoelectromagnetism and make a conclusion about the mandatory existence of the Medium of the World. This paper aligns the World-Universe Model with the Le Sage’s theory of gravitation and makes a deduction on Gravity, Space and Time be emergent phenomena.
基金This work is supported by National Natural Science Foundation of China(12335006 and 12075003).
文摘Based on the recent association of IceCube TeV and PeV neutrino events with gamma-ray bursts(GRBs)by considering the Lorentz violation of neutrinos,we provide a new estimate on the GRB neutrino flux with a more significant result compared to the previous constraint by the IceCube Collaboration.Among these 24 neutrino“shower”events above 60 TeV,12 events are associated with GRBs.Such a result is compatible with the prediction from GRB fireball models.Analysis of track events provides a consistent result with the shower events to associate high energy cosmic neutrinos with GRBs under the same Lorentz violation features of neutrinos.We also make a background estimation and reveal GRBs as a significant source for the ultra-high energy IceCube neutrino events.Our work supports the Lorentz violation and CPT-violation of neutrinos,indicating new physics beyond relativity.
文摘This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.
文摘We show that recently multi-messenger astronomy has provided compelling evidence that the bulk of high energy cosmic rays (CRs) are produced by highly relativistic narrow jets of plasmoids launched in core collapse of stripped-envelope massive stars to neutron stars and stellar mass black holes. Such events produce also a visible GRB if the jet happens to point in our direction. This has been long advocated by the cannon ball (CB) model of high energy CRs and GRBs, but the evidence has been provided only recently by what were widely believed to be unrelated discoveries. They include the very recent discovery of a knee around TeV in the energy spectrum of high energy CR electrons, the peak photon energy in the “brightest of all time” GRB221009A, and the failure of IceCube to detect high energy neutrinos from GRBs, including GRB221009A. They were all predicted by the cannonball (CB) model of high energy CRs and GRBs long before they were discovered in observations, despite a negligible probability to occur by chance.
文摘Physics is a branch of science to study matter and its motion in space and time. Development of physics usually upgrades human perspective and understanding of the space and time. Einstein successfully developed special and general theories of relativity and creatively promoted our perspective of spacetime from Newton’s absolute space and time to his relative spacetime. Based on redshift and distance measurements of galaxies and distant type Ia supernovae, cosmologists have suggested that our universe is expanding at an ever-increasing rate driven by a mysterious dark energy. Recently, the author has proposed that spacetime is dynamic. Spacetime is said to be absolute if it is independent of matter and motion, relative if it is affected by matter and motion, and dynamic if it mutually interacts with matter and motion. In dynamic spacetime, not only do matter and motion distort spacetime, but they are also affected by the distorted spacetime. Spacetime to be dynamic is a consequence of a deep insight to Mach’s principle, which tells us that the inertia of an object results from the gravitational interaction by the rest of the universe. Reaction of dynamic spacetime on a traveling light causes light redshift. Reaction of dynamic spacetime on a fast moving neutrino slows down the neutrino. The derived redshift-distance relation perfectly explained the measurements of distant type Ia supernovae and gamma ray bursts (GRBs) and also naturally obtained Hubble’s law as an approximate relation at small redshift. This explanation of cosmological redshift as the opposition of dynamic spacetime does not mandate the universe to be expanding and accelerating, so that it does not need the universe to be initiated from a Big Bang and driven out mainly by a mysterious dark energy. Extremely slowed down neutrinos in dynamic spacetime, when they are gravitationally trapped around clusters, galaxies, and any celestial objects, would play the role of dark matter in explaining the velocity-radius relations of galaxy’s or clust
文摘We constrain two dynamical dark energy models that are parametrized by the logarithm form of and the oscillating form of . Comparing with the Chevallier-Polarski-Linder (CPL) model, the two parametrizations for dark energy can explore the whole evolution history of the universe properly. Using the current mainstream observational data including the cosmic microwave background data and the baryon acoustic oscillation data as well as the type Ia supernovae data, we perform the X<sup>2</sup> statistic analysis to global fit these models, finding that the logarithm parametrization and the oscillating parameterization are almost as well as the CPL scenario in fitting these data. We make a comparison for the impacts of the dynamical dark energy on the cosmological constraints on the total mass of active neutrinos. We find that the logarithm parametrization and the oscillating parameterization can increase the fitting values of Σm<sub>v</sub>. Looser constraints on Σm<sub>v</sub> are obtained in the logarithm and oscillating models than those derived in the CPL model. Consideration of the possible mass ordering of neutrinos reveals that the most stringent constraint on Σm<sub>v</sub> appears in the degenerate hierarchy case.
文摘In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.
文摘This manuscript summarizes the results of Classical Physics before Quantum Mechanics and Hypotheses proposed by classical physicists from the 17th until the beginning of 21st century. We then proceed to unify these results into a single coherent picture in frames of the developed Hypersphere World-Universe Model (WUM). The Model proposes 5 types of Dark Matter particles and predicts their masses;models the origin, evolution, and structure of the World and Macroobjects;provides a mathematical framework that ties together a number of Fundamental constants and allows for direct calculation of their values.
文摘The Standard Model of particle physics involves twelve fundamental fermions, treated as point particles, in four charge states. However, the Standard Model does not explain why only three fermions are in each charge state or account for neutrino mass. This holographic analysis treats charged Standard Model fermions as spheres with mass 0.187 g/cm<sup>2</sup> times their surface area, using the proportionality constant in the holographic relation between mass of the observable universe and event horizon radius. The analysis requires three Standard Model fermions per charge state and relates up quark and down quark masses to electron mass. Holographic analysis specifies electron mass, to six significant figures, in terms of fundamental constants α,ℏ,G,Λ and Ω Λ . Treating neutrinos as spheres and equating electron neutrino energy density with cosmic vacuum energy density predicts neutrino masses consistent with experiment.
文摘By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix and applying the rule for the sum of the oscillation probabilities of three neutrinos, the equations of motion were derived in which the Dirac CP violating phase appeared as an unknown quantity. The equations of motion were separately derived for each of the three possible transitions for flavor-neutrino oscillations. Two roots of those equations were obtained in the form of two formulas for the Dirac CP violating phase with opposite signs. In the mathematical sense, the connection between those formulas was established in order to maintain the continuous process of oscillation of three neutrinos. This made it possible to calculate the numerical value for the Dirac CP violating phase, the Jarlskog invariant and to write the general form of the PMNS mixing matrix in the final form in which all its elements are defined with explicit numerical values.
文摘The research on the collapse of stars, due to Gravity, after the depletion of the fusion fuel, engaged a number of famous guys as Eddington, Chandrasekhar, Schwarzschild and Oppenheimer in the years around 1910-1050. During this period, Einstein was writing his field equation of general relativity (1923), Fermi, in a famous letter to Pauli, proposed the neutrino in beta decay theory (1930), Chadwick found the neutron, that granted him the Nobel price (1935) and Hubble (1929) proved that the Universe was expanding. As a result of that golden age, we remain with a lot of unsolved questions, due to the poor knowledge of the nature of the strong Nuclear Interaction of Gravity that controls the whole Universe. We have made an investigation on the nature of nuclear bond and gravitational attraction on the basis of available data and as a follow-up of Fermi famous research on Neutrino. Using this background, we hope to be able to explain or give some light to the evolution of stars, to the strange objects and phenomena captured or perceived by astronomers in the sky and speculated by theoretical physicists.
文摘Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed.