An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The f...An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.展开更多
A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relatio...A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.展开更多
In the experimental campaign of 2010 and 2011 on KSTAR, the NBI-1 system was equipped with one prototype ion source and operated successfully, providing a neutral beam power of 0.7-1.6 MW to the tokamak plasma. The ne...In the experimental campaign of 2010 and 2011 on KSTAR, the NBI-1 system was equipped with one prototype ion source and operated successfully, providing a neutral beam power of 0.7-1.6 MW to the tokamak plasma. The new ion source planned for the 2012 KSTAR campaign had a much more advanced performance compared with the previous one. The target performance of the new ion source was to provide a neutral deuterium beam of 2 MW to the tokamak plasma. The ion source was newly designed, fabricated, and assembled in 2011. The new ion source was then conditioned up to 64 A/100 keV over a 2-hour beam extraction and performance tested at the NB test stand (NBTS) at the Korea Atomic Energy Research Institute (KAERI) in 2012. The measured optimum perveance at which the beam divergence is a minimum was about 2.5μP, and the minimum beam divergent angle was under 1.0° at 60 keV. These results indicate that the 2.0 MW neutral beam power at 100 keV required for the heating of plasma in KSTAR can be delivered by the installation of the new ion source in the KSTAR NBI-1 system.展开更多
Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non...Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.展开更多
As one of the most effective methods for plasma heating,a neutral beam injector(NBI) achieved plasma heating and current driving for the first time in EAST 2014 experimental campaign.According to the research plan o...As one of the most effective methods for plasma heating,a neutral beam injector(NBI) achieved plasma heating and current driving for the first time in EAST 2014 experimental campaign.According to the research plan of the EAST physics experiment,the first NBI(EASTNBI-1) has been built and become operational in 2014.In this article,the latest experiment results of EAST-NBI-1 are reported as follows:(1) EAST achieves H-mode plasma in the case of NBI heating alone,(2) EAST achieves 22 s long pulse stable H-mode plasma in the case of sinndtaneous NBI and lower hybrid wave(LHW) heating.The measurement data show that the loop voltage decreased and the plasma stored energy increased obviously.The results indicate that EAST-NBI-1 has achieved plasma heating and current driving,and thus lays a foundation for the construction of EAST-NBI-2,which will be built in a few months this year.展开更多
This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the ...This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.展开更多
文摘An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.
基金supported by National Natural Science Foundation of China (Nos.40731056, 10675029, 40605021 and 10575018)the Major State Basic Research Development Program of China (Nos.2009GB107001, 2008CB787103 and 2009GB105004)
文摘A predictive calculation is carried out for neutral beam heating of fusion plasmas in EAST by using NUBEAM code under certain plasma conditions. Results calculated are analyzed for different plasma parameters. Relations between major plasma parameters, such as density and temperature, are obtained and key physical processes in the neutral beam heating, including beam power deposition, trapped fraction, heating efficiency, and power loss, are simulated. Other physical processes, such as current-drive, toroidal rotation and neutron emission, are also discussed.
文摘In the experimental campaign of 2010 and 2011 on KSTAR, the NBI-1 system was equipped with one prototype ion source and operated successfully, providing a neutral beam power of 0.7-1.6 MW to the tokamak plasma. The new ion source planned for the 2012 KSTAR campaign had a much more advanced performance compared with the previous one. The target performance of the new ion source was to provide a neutral deuterium beam of 2 MW to the tokamak plasma. The ion source was newly designed, fabricated, and assembled in 2011. The new ion source was then conditioned up to 64 A/100 keV over a 2-hour beam extraction and performance tested at the NB test stand (NBTS) at the Korea Atomic Energy Research Institute (KAERI) in 2012. The measured optimum perveance at which the beam divergence is a minimum was about 2.5μP, and the minimum beam divergent angle was under 1.0° at 60 keV. These results indicate that the 2.0 MW neutral beam power at 100 keV required for the heating of plasma in KSTAR can be delivered by the installation of the new ion source in the KSTAR NBI-1 system.
基金supported by National Natural Science Foundation of China (No. 11075188)the Chinese Academy of Sciences Knowledge Innovation Project: the study of neutral beam steady-state operation of the key technical and physical problems
文摘Neutral beam injection (NBI) system with two neutral beam injections will be con- structed on the Experimental Advanced Superconducting Tokamak (EAST) in two stages for high power auxiliary plasmas heating and non-inductive current drive. Each NBI can deliver 2-4 MW beam power with 50-80 keV beam energy in 10-100 s pulse length. Each elements of the NBI system are presented in this contribution.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101000)
文摘As one of the most effective methods for plasma heating,a neutral beam injector(NBI) achieved plasma heating and current driving for the first time in EAST 2014 experimental campaign.According to the research plan of the EAST physics experiment,the first NBI(EASTNBI-1) has been built and become operational in 2014.In this article,the latest experiment results of EAST-NBI-1 are reported as follows:(1) EAST achieves H-mode plasma in the case of NBI heating alone,(2) EAST achieves 22 s long pulse stable H-mode plasma in the case of sinndtaneous NBI and lower hybrid wave(LHW) heating.The measurement data show that the loop voltage decreased and the plasma stored energy increased obviously.The results indicate that EAST-NBI-1 has achieved plasma heating and current driving,and thus lays a foundation for the construction of EAST-NBI-2,which will be built in a few months this year.
基金supported by ITER Research Project of China Matched Program (No.2009GB107004)the Fundamental Research Funds for the Central Universities of China (No.ZYGX2010J056)Natural Natural Science Foundation of China (No.11205027)
文摘This paper deals with the profile measurement of impurity ion temperature and toroidal rotation velocity that can be achieved by using the charge exchange recombination spectrum (CXRS) diagnostics tool built on the HL-2A toknmak. By using CXRS, an accurate impurity ion temperature and toroidal plasma rotation velocity profile can be achieved under the condition of neutrM beam injection (NBI) heating. Considering the edge effect of the line of CVI 529.06 nm (n= 8-7), which contains three lines (active exciting spectral line (ACX), passivity exciting spectral line (PCX) and electron exciting spectral line (ICE)), and using three Gaussian fitted curves, we obtain the following experimental results: the core ion temperature of HL-2A device is nearly thousands of eV, and the plasma rotation velocity reaches about 104 m· s^-1. At the end of paper, some explanations are presented for the relationship between the curves and the inner physical mechanism.