期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
How random is the random forest ? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from Alzheimer's disease neuroimaging initiative(ADNI) database 被引量:5
1
作者 Stavros I.Dimitriadis Dimitris Liparas 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期962-970,共9页
Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfu... Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfunctions in brain diseases. Neuroinformaticians work in the intersection of neuroscience and informatics supporting the integration of various sub-disciplines(behavioural neuroscience, genetics, cognitive psychology, etc.) working on brain research. Neuroinformaticians are the pathway of information exchange between informaticians and clinicians for a better understanding of the outcome of computational models and the clinical interpretation of the analysis. Machine learning is one of the most significant computational developments in the last decade giving tools to neuroinformaticians and finally to radiologists and clinicians for an automatic and early diagnosis-prognosis of a brain disease. Random forest(RF) algorithm has been successfully applied to high-dimensional neuroimaging data for feature reduction and also has been applied to classify the clinical label of a subject using single or multi-modal neuroimaging datasets. Our aim was to review the studies where RF was applied to correctly predict the Alzheimer's disease(AD), the conversion from mild cognitive impairment(MCI) and its robustness to overfitting, outliers and handling of non-linear data. Finally, we described our RF-based model that gave us the 1 ^(st) position in an international challenge for automated prediction of MCI from MRI data. 展开更多
关键词 random forest Alzheimer's disease mild cognitive impairment neuroimaging classification machine learning biomarker magnetic resonance imaging
下载PDF
血管性认知障碍早期诊断的研究进展 被引量:7
2
作者 王苗苗 刘晓林 《实用心脑肺血管病杂志》 2016年第8期5-8,共4页
目的血管性认知障碍(VCI)涵盖从轻度认知障碍到痴呆全过程,近年来其发病率逐年增高,且痴呆患者由于严重的认知功能障碍而丧失了治疗机会,严重影响患者的生活质量,因此,早期诊断VCI具有重要的临床意义。本文介绍了临床评估、神经影像学... 目的血管性认知障碍(VCI)涵盖从轻度认知障碍到痴呆全过程,近年来其发病率逐年增高,且痴呆患者由于严重的认知功能障碍而丧失了治疗机会,严重影响患者的生活质量,因此,早期诊断VCI具有重要的临床意义。本文介绍了临床评估、神经影像学检查、神经心理评估、生物学标志物等在VCI早期诊断中的应用价值,以期为早期诊断VCI提供参考。 展开更多
关键词 认知障碍 诊断 神经成像 神经心理学 生物学标志物
下载PDF
DTI-ALPS技术在脑类淋巴系统及脑小血管病评估中的研究进展
3
作者 张雪 张敏 恽文伟 《中华神经医学杂志》 CAS CSCD 北大核心 2024年第8期854-858,共5页
脑类淋巴系统(GS)又称脑胶质淋巴系统,在维持大脑内环境稳定方面发挥着重要的作用。既往研究发现,脑小血管病(CSVD)的发生与GS功能障碍相关。沿血管周围间隙弥散张量成像分析(DTI-ALPS)技术作为神经影像学中的一种新兴无创方法,在评估... 脑类淋巴系统(GS)又称脑胶质淋巴系统,在维持大脑内环境稳定方面发挥着重要的作用。既往研究发现,脑小血管病(CSVD)的发生与GS功能障碍相关。沿血管周围间隙弥散张量成像分析(DTI-ALPS)技术作为神经影像学中的一种新兴无创方法,在评估中枢神经系统疾病GS功能方面取得了显著的进展。本文从DTI-ALPS技术的原理、DTI-ALPS指数与GS关系、DTI-ALPS指数与CSVD不同影像学标志物以及CSVD认知障碍关系等方面进行综述,以期为CSVD的早期诊断、进展和预后评估提供帮助。 展开更多
关键词 脑类淋巴系统 沿血管周围间隙弥散张量成像分析 脑小血管病 神经影像学标志物 认知障碍
原文传递
神经生理学和神经影像学在脑卒中预后评估中的应用进展
4
作者 李脉 姚黎清 +2 位作者 曾勇 王文丽 付雨桐 《临床医学研究与实践》 2024年第30期190-194,共5页
脑卒中是一种中枢神经系统疾病,会导致大脑结构损伤和功能损伤,造成不同类型和程度的功能障碍。双峰平衡恢复模型(包括半球间竞争模型和代换模型)被认为是脑卒中后功能恢复的机制。脑卒中的恢复情况可以通过预后生物标志物来预测,这些... 脑卒中是一种中枢神经系统疾病,会导致大脑结构损伤和功能损伤,造成不同类型和程度的功能障碍。双峰平衡恢复模型(包括半球间竞争模型和代换模型)被认为是脑卒中后功能恢复的机制。脑卒中的恢复情况可以通过预后生物标志物来预测,这些生物标志物在细胞和分子层面与脑卒中病理生理有关,在系统神经科学层面则与脑卒中后大脑结构和功能储备有关。本文旨在回顾可预测脑卒中后功能恢复的潜在生物标志物。 展开更多
关键词 脑卒中 功能恢复 神经生理学 神经影像学 生物标志物
下载PDF
Resting-state functional magnetic resonance imaging and support vector machines for the diagnosis of major depressive disorder in adolescents
5
作者 Zhi-Hui Yu Ren-Qiang Yu +6 位作者 Xing-Yu Wang Wen-Yu Ren Xiao-Qin Zhang Wei Wu Xiao Li Lin-Qi Dai Ya-Lan Lv 《World Journal of Psychiatry》 SCIE 2024年第11期1696-1707,共12页
BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers base... BACKGROUND Research has found that the amygdala plays a significant role in underlying pathology of major depressive disorder(MDD).However,few studies have explored machine learning-assisted diagnostic biomarkers based on amygdala functional connectivity(FC).AIM To investigate the analysis of neuroimaging biomarkers as a streamlined approach for the diagnosis of MDD in adolescents.METHODS Forty-four adolescents diagnosed with MDD and 43 healthy controls were enrolled in the study.Using resting-state functional magnetic resonance imaging,the FC was compared between the adolescents with MDD and the healthy controls,with the bilateral amygdala serving as the seed point,followed by statistical analysis of the results.The support vector machine(SVM)method was then applied to classify functional connections in various brain regions and to evaluate the neurophysiological characteristics associated with MDD.RESULTS Compared to the controls and using the bilateral amygdala as the region of interest,patients with MDD showed significantly lower FC values in the left inferior temporal gyrus,bilateral calcarine,right lingual gyrus,and left superior occipital gyrus.However,there was an increase in the FC value in Vermis-10.The SVM analysis revealed that the reduction in the FC value in the right lingual gyrus could effectively differentiate patients with MDD from healthy controls,achieving a diagnostic accuracy of 83.91%,sensitivity of 79.55%,specificity of 88.37%,and an area under the curve of 67.65%.CONCLUSION The results showed that an abnormal FC value in the right lingual gyrus was effective as a neuroimaging biomarker to distinguish patients with MDD from healthy controls. 展开更多
关键词 Major depressive disorder ADOLESCENT Support vector machine Machine learning Resting-state functional magnetic resonance imaging neuroimaging biomarker
下载PDF
帕金森病轻度认知功能障碍评估的研究进展 被引量:3
6
作者 尹亭亭 付光蕾 +1 位作者 钟媛 赵玉会 《中华现代护理杂志》 2020年第32期4568-4572,共5页
本文通过回顾和分析关于帕金森病轻度认知功能障碍(Parkinson's disease-mild cognitive impairment,PD-MCI)的相关指南及文献,对PD-MCI的评估现状、两种常用评估手段以及评估时机作一综述,旨在为我国临床评估PD-MCI提供参考,从而... 本文通过回顾和分析关于帕金森病轻度认知功能障碍(Parkinson's disease-mild cognitive impairment,PD-MCI)的相关指南及文献,对PD-MCI的评估现状、两种常用评估手段以及评估时机作一综述,旨在为我国临床评估PD-MCI提供参考,从而降低帕金森病痴呆的发生。 展开更多
关键词 综述 帕金森病轻度认知功能障碍 神经心理学检查 神经影像学生物标志物
原文传递
基于个体特异性功能连接的阿尔茨海默病早期识别研究 被引量:3
7
作者 王雪彤 董晓熹 李淑宇 《磁共振成像》 CAS CSCD 北大核心 2022年第4期56-61,68,共7页
目的基于静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-f MRI)探索个体特异性功能连接对阿尔茨海默病(Alzheimer’s disease,AD)及轻度认知障碍(mild cognitive impairment,MCI)患者、稳定型轻度认知... 目的基于静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-f MRI)探索个体特异性功能连接对阿尔茨海默病(Alzheimer’s disease,AD)及轻度认知障碍(mild cognitive impairment,MCI)患者、稳定型轻度认知障碍(stable mild cognitive impairment,sMCI)及进展型轻度认知障碍(progress mild cognitive impairment,pMCI)患者分类的影响,提取有助于AD及MCI诊断的潜在神经影像学标志物。材料与方法使用阿尔茨海默病神经影像学计划(Alzheimer’s Disease Neuroimaging Initiative,ADNI)数据集,包含47名正常对照组(normal controls,NC),66名s MCI,24名p MCI和29名AD患者。本文使用基于多任务学习的稀疏凸松弛交互结构优化(multi-task learning-based sparse convex alternating structure optimization,MTL-s CASO)方法提取个体特异性功能连接,并通过最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)进行特征选择,最后利用支持向量机(support vector machine,SVM)分类器完成AD/MCI/NC的三分类及s MCI/p MCI的二分类任务。此外,采用双样本t检验来计算分类过程中最具辨识力的功能连接的组间差异(P<0.05)。结果相比于通过传统皮尔森相关构建的功能连接的分类结果(73.49%),基于个体特异性功能连接对AD/MCI/NC的三分类准确度达到了85.54%。此外,使用个体特异性功能连接对sMCI/pMC的分类性能(86.67%)要优于使用皮尔森相关得到的功能连接的分类性能(75.56%)。在分类过程中最具辨识力的功能连接,其连接强度在组间的差异有统计学意义。结论采用蕴含更多个体特性的个体特异性连接可提高对AD及MCI识别准确度,个体特异性功能连接有望作为AD及MCI诊断的潜在神经影像学标志物。 展开更多
关键词 静息态功能磁共振成像 阿尔茨海默病 轻度认知障碍 多任务学习 个体特异性功能连接 早期诊断 影像学标志物
下载PDF
Brain Signaling in Psychiatric Disorders: What Can They Tell Us in the Absence of Behavioral Differences?
8
作者 Jodi M. Gilman James M. Bjork Timothy E. Wilens 《Journal of Behavioral and Brain Science》 2015年第8期333-337,共5页
This is a commentary on the often-observed phenomenon of observing task-based brain signaling differences between clinical populations and healthy control participants in the absence of any behavioral decrements in th... This is a commentary on the often-observed phenomenon of observing task-based brain signaling differences between clinical populations and healthy control participants in the absence of any behavioral decrements in the clinical group. We offer several explanations for why brain-based differences amid normative performance may be of interest to researchers and clinicians. First, neural processing in the clinical group may not be as efficient as that in the control group. Second, differences in activation could reveal important differences in the cognition behind the (normative) behavior. Third, differences in activation may be prognostic biomarkers of injury or decline. In addition, we contend that similar behavior between groups is important in properly interpreting brain data. Finally, we offer caveats and future directions to further clarify brain mechanisms underlying behavior in clinical populations. 展开更多
关键词 fMRI neuroimaging NORMATIVE Behavior NORMATIVE Performance Neural Efficiency PROGNOSTIC biomarker
下载PDF
Candidate Biomarkers in Children with Autism Spectrum Disorder: A Review of MRI Studies 被引量:7
9
作者 Dongyun Li Hans-Otto Karnath Xiu Xu 《Neuroscience Bulletin》 SCIE CAS CSCD 2017年第2期219-237,共19页
Searching for effective biomarkers is one of the most challenging tasks in the research ?eld of Autism Spectrum Disorder(ASD). Magnetic resonance imaging(MRI) provides a non-invasive and powerful tool for investi... Searching for effective biomarkers is one of the most challenging tasks in the research ?eld of Autism Spectrum Disorder(ASD). Magnetic resonance imaging(MRI) provides a non-invasive and powerful tool for investigating changes in the structure, function, maturation,connectivity, and metabolism of the brain of children with ASD. Here, we review the more recent MRI studies in young children with ASD, aiming to provide candidate biomarkers for the diagnosis of childhood ASD. The review covers structural imaging methods, diffusion tensor imaging, resting-state functional MRI, and magnetic resonance spectroscopy. Future advances in neuroimaging techniques, as well as cross-disciplinary studies and largescale collaborations will be needed for an integrated approach linking neuroimaging, genetics, and phenotypic data to allow the discovery of new, effective biomarkers. 展开更多
关键词 Autism spectrum disorder biomarker neuroimaging Structural MRI Diffusion tensor imaging Resting-state functional MRI Magnetic resonance spectroscopy Children Human
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部