Neurodegenerative disorders,including Alzheimer's disease(AD) and Parkinson's disease(PD),are common disorders of the central nervous system among aging populations.In the last 10 years insights concerning the...Neurodegenerative disorders,including Alzheimer's disease(AD) and Parkinson's disease(PD),are common disorders of the central nervous system among aging populations.In the last 10 years insights concerning the etiology,diagnosis and pathogenesis of these diseases have come from research carried out by Chinese neuroscientists.Their findings include the description of Chinese patients with autosomal recessive early-onset PD,the function of the tau protein,molecular mechanisms underlying protein aggregation,and the identification of biomarkers for AD diagnosis and molecules/compounds with potential neuroprotective activities.展开更多
Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to ...Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.展开更多
Cadmium(Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropoge...Cadmium(Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropogenic mobilization and it is absorbed from tobacco consumption or ingestion of contaminated substances. Its extremely long biological half-life(approximately 20-30 years in humans) and low rate of excretion from the body cause cadmium storage predominantly in soft tissues(primarily, liver and kidneys) with a diversity of toxic effects such as nephrotoxicity, hepatotoxicity, endocrine and reproductive toxicities. Moreover, a Cd-dependent neurotoxicity has been also related to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and multiple sclerosis. At the cellular level, Cd affects cell proliferation, differentiation, apoptosis and other cellular activities. Among all these mechanisms, the Cd-dependent interference in DNA repair mechanisms as well as the generation of reactive oxygen species, seem to be the most important causes of its cellular toxicity. Nevertheless, there is still much to find out about its mechanisms of action and ways to reduce health risks. This article gives a brief review of the relevant mechanisms that it would be worth investigating in order to deep inside cadmium toxicity.展开更多
Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-...Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during longterm culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-re- lated transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.展开更多
Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only al...Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer’s disease, and the current state of stem cell transplantation in the treatment of Alzheimer’s disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer’s disease.展开更多
Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells(MSC) to secrete brain-derived neurotrophic factor(BDNF) supports our plan to submit an Investigational N...Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells(MSC) to secrete brain-derived neurotrophic factor(BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease(HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis(ALS), spinocerebellar ataxia(SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system.展开更多
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects a...Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).展开更多
cAMP反应元件结合蛋白(cAMP response elem ent b ind-ing prote in,CREB)是位于细胞核内的转录因子。CREB的活性受到信号通路中许多因子的调控。CREB活化后与真核生物靶基因CRE序列结合并调节其转录,发挥多种生物学效应。在中枢神经系...cAMP反应元件结合蛋白(cAMP response elem ent b ind-ing prote in,CREB)是位于细胞核内的转录因子。CREB的活性受到信号通路中许多因子的调控。CREB活化后与真核生物靶基因CRE序列结合并调节其转录,发挥多种生物学效应。在中枢神经系统,CREB调节着神经细胞生长发育,参与神经细胞突触可塑性、长时程记忆的形成过程。CREB参与阿尔采末病、血管性痴呆、亨廷顿舞蹈病及H IV-相关痴呆等神经退行性疾病的病理生理机制研究也取得了进展,成为以CREB作为靶点控制神经退行性疾病病程的理论基础。展开更多
基金supported by the National Natural Science Foundation of China (Grant No 30721004)the National Basic Research Program of China (Grant No 2006CB500704)
文摘Neurodegenerative disorders,including Alzheimer's disease(AD) and Parkinson's disease(PD),are common disorders of the central nervous system among aging populations.In the last 10 years insights concerning the etiology,diagnosis and pathogenesis of these diseases have come from research carried out by Chinese neuroscientists.Their findings include the description of Chinese patients with autosomal recessive early-onset PD,the function of the tau protein,molecular mechanisms underlying protein aggregation,and the identification of biomarkers for AD diagnosis and molecules/compounds with potential neuroprotective activities.
基金Supported by The Health and Labor Sciences Research Grants(Comprehensive Research on Disability,Health,and Welfare H21-kokoro-002)(H.K.)the Core Research for Evolutional Science and Technology Program,CREST,Japan Science and Technology Agency(JST)(T.N.,N.A.and H.K.)+3 种基金the Naito Foundation(N.A)the Takeda Science Foundation(T.N.)a grant from Grant-in-Aid for Scientific Research(B),(JSPS KAKENHI)(T.N.),No.24300139Grant-in-Aid for Challenging Exploratory Research(JSPS KAKENHI)(T.N.)from the Ministry of Education,Culture,Sports,Science,and Technology of Japan,No.25640019
文摘Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer's disease, Huntington's disease, depression and schizophrenia.
文摘Cadmium(Cd) is a highly toxic heavy metal that accumulates in living system and as such is currently one of the most important occupational and environmental pollutants. Cd reaches into the environment by anthropogenic mobilization and it is absorbed from tobacco consumption or ingestion of contaminated substances. Its extremely long biological half-life(approximately 20-30 years in humans) and low rate of excretion from the body cause cadmium storage predominantly in soft tissues(primarily, liver and kidneys) with a diversity of toxic effects such as nephrotoxicity, hepatotoxicity, endocrine and reproductive toxicities. Moreover, a Cd-dependent neurotoxicity has been also related to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and multiple sclerosis. At the cellular level, Cd affects cell proliferation, differentiation, apoptosis and other cellular activities. Among all these mechanisms, the Cd-dependent interference in DNA repair mechanisms as well as the generation of reactive oxygen species, seem to be the most important causes of its cellular toxicity. Nevertheless, there is still much to find out about its mechanisms of action and ways to reduce health risks. This article gives a brief review of the relevant mechanisms that it would be worth investigating in order to deep inside cadmium toxicity.
基金part supported by the Department of Biomedical Sciences and Biotechnologies,Medical School,University of Catania,Italy(National Grant.PON 01_00110)
文摘Aging is the most prominent risk factor contributing to the development of neurodegenerative disorders. In the United States, over 35 million of elderly people suffer from age-related diseases. Aging impairs the self-repair ability of neuronal cells, which undergo progressive deterioration. Once initiated, this process hampers the already limited regenerative power of the central nervous system, making the search for new therapeutic strategies particularly difficult in elderly affected patients. So far, mesenchymal stem cells have proven to be a viable option to ameliorate certain aspects of neurodegeneration, as they possess high proliferative rate and differentiate in vitro into multiple lineages. However, accumulating data have demonstrated that during longterm culture, mesenchymal stem cells undergo spontaneous transformation. Transformed mesenchymal stem cells show typical features of senescence, including the progressive shortening of telomers, which results in cell loss and, as a consequence, hampered regenerative potential. These evidences, in line with those observed in mesenchymal stem cells isolated from old donors, suggest that senescence may represent a limit to mesenchymal stem cells exploitation in therapy, prompting scholars to either find alternative sources of pluripotent cells or to arrest the age-re- lated transformation. In the present review, we summarize findings from recent literature, and critically discuss some of the major hurdles encountered in the search of appropriate sources of mesenchymal stem cells, as well as benefits arising from their use in neurodegenerative diseases. Finally, we provide some insights that may aid in the development of strategies to arrest or, at least, delay the aging of mesenchymal stem cells to improve their therapeutic potential.
基金supported by the National Natural Science Foundation of China,No.81701076(to LLZ)and No.31670795(to XQF)2017 Changbai Mountain Research Support Foundation,No.440050117010(to XQF)+1 种基金Opening Project of Zhejiang Provincial Top Key Discipline of Pharmaceutical Sciences,No.YKFJ2-007(to LLZ)grants from the Science and Technology Department of Jilin Province,China,No.20190701037GH(to FQZ),20180520138JH(to FQZ),20190701036GH(to LLZ)
文摘Alzheimer’s disease is a common progressive neurodegenerative disorder, pathologically characterized by the presence of β-amyloid plaques and neurofibrillary tangles. Current treatment approaches using drugs only alleviate the symptoms without curing the disease, which is a serious issue and influences the quality of life of the patients and their caregivers. In recent years, stem cell technology has provided new insights into the treatment of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Currently, the main sources of stem cells include neural stem cells, embryonic stem cells, mesenchymal stem cells, and induced pluripotent stem cells. In this review, we discuss the pathophysiology and general treatment of Alzheimer’s disease, and the current state of stem cell transplantation in the treatment of Alzheimer’s disease. We also assess future challenges in the clinical application and drug development of stem cell transplantation as a treatment for Alzheimer’s disease.
基金provided by a NIH NIGMS Predoctoral Fellowship T32GM099608(Deng)NIH NRSA Postdoctoral Fellowship F32NS090722(Fink)+2 种基金a NIH Director’s transformative award 1R01GM099688(Nolta)A Stewart’s and Dake Family Gift(Fink),California Institute for Regenerative Medicine(CIRM)DR2-05415(Wheelock/Nolta)philanthropic donors from the HD community,including the Roberson family and Team KJ
文摘Progress to date from our group and others indicate that using genetically-engineered mesenchymal stem cells(MSC) to secrete brain-derived neurotrophic factor(BDNF) supports our plan to submit an Investigational New Drug application to the Food and Drug Administration for the future planned Phase 1 safety and tolerability trial of MSC/BDNF in patients with Huntington's disease(HD). There are also potential applications of this approach beyond HD. Our biological delivery system for BDNF sets the precedent for adult stem cell therapy in the brain and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis(ALS), spinocerebellar ataxia(SCA), Alzheimer's disease, and some forms of Parkinson's disease. The MSC/BDNF product could also be considered for studies of regeneration in traumatic brain injury, spinal cord and peripheral nerve injury. This work also provides a platform for our future gene editing studies, since we will again use MSCs to deliver the needed molecules into the central nervous system.
文摘Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).
文摘cAMP反应元件结合蛋白(cAMP response elem ent b ind-ing prote in,CREB)是位于细胞核内的转录因子。CREB的活性受到信号通路中许多因子的调控。CREB活化后与真核生物靶基因CRE序列结合并调节其转录,发挥多种生物学效应。在中枢神经系统,CREB调节着神经细胞生长发育,参与神经细胞突触可塑性、长时程记忆的形成过程。CREB参与阿尔采末病、血管性痴呆、亨廷顿舞蹈病及H IV-相关痴呆等神经退行性疾病的病理生理机制研究也取得了进展,成为以CREB作为靶点控制神经退行性疾病病程的理论基础。