交通流量预测的本质是对具有非周期性、非线性和随机性的交通流量数据序列根据当前和历史数据特征对未来流量态势做出合理的判断。基于模糊神经推理网络的非线性拟合能力和推理机制,研究了自适应模糊神经推理网络ANFIS在交通流量预测中...交通流量预测的本质是对具有非周期性、非线性和随机性的交通流量数据序列根据当前和历史数据特征对未来流量态势做出合理的判断。基于模糊神经推理网络的非线性拟合能力和推理机制,研究了自适应模糊神经推理网络ANFIS在交通流量预测中的应用。设计了3种形式的一阶模糊推理网络,对采样周期分别为30 s和2 m in的非周期性交通流量进行了预测计算,与具有不同隐层单元的BP神经网络预测结果进行了比较。结果表明自适应模糊神经网络计算简单,在交通流量趋势预测方面优势明显。展开更多
Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actu...Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.展开更多
文摘交通流量预测的本质是对具有非周期性、非线性和随机性的交通流量数据序列根据当前和历史数据特征对未来流量态势做出合理的判断。基于模糊神经推理网络的非线性拟合能力和推理机制,研究了自适应模糊神经推理网络ANFIS在交通流量预测中的应用。设计了3种形式的一阶模糊推理网络,对采样周期分别为30 s和2 m in的非周期性交通流量进行了预测计算,与具有不同隐层单元的BP神经网络预测结果进行了比较。结果表明自适应模糊神经网络计算简单,在交通流量趋势预测方面优势明显。
基金Acknowledgement This paper is supported by National Natural Science Foundation of China (Grant No. 60973092 and No. 60873146), the National High Technology Research and Development Program of China (Grant No.2009 AA02Z307), the "211 Project" of Jilin University, the Key Laboratory for Symbol Computation and Knowledge Engineering (Ministry of Education, China), and the Key Laboratory for New Technology of Biological Recognition of Jilin Province (No. 20082209).
文摘Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly. In this paper, we propose a novel approach based on combining neuro-fu^zy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory nctworks+ but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without lhctitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast, The results show that this approach can work effectively.