With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to ...With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.展开更多
在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S 个...在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S 个兴趣点作为用户的潜在兴趣点。将用户的潜在签到记录引入基于时间效应的矩阵分解模型中,考虑时间差异性和连续性对推荐结果的影响,在此基础上进行优化求解,提出推荐策略。实验结果表明,与LRT模型、UTE+SE模型相比,该模型的推荐效果较好,其准确率和召回率最高可达0.103 4和0.111 8。展开更多
文摘With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model.
文摘在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S 个兴趣点作为用户的潜在兴趣点。将用户的潜在签到记录引入基于时间效应的矩阵分解模型中,考虑时间差异性和连续性对推荐结果的影响,在此基础上进行优化求解,提出推荐策略。实验结果表明,与LRT模型、UTE+SE模型相比,该模型的推荐效果较好,其准确率和召回率最高可达0.103 4和0.111 8。