期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
POI Neural-Rec Model via Graph Embedding Representation 被引量:7
1
作者 Kang Yang Jinghua Zhu Xu Guo 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第2期208-218,共11页
With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to ... With the booming of the Internet of Things(Io T)and the speedy advancement of Location-Based Social Networks(LBSNs),Point-Of-Interest(POI)recommendation has become a vital strategy for supporting people’s ability to mine their POIs.However,classical recommendation models,such as collaborative filtering,are not effective for structuring POI recommendations due to the sparseness of user check-ins.Furthermore,LBSN recommendations are distinct from other recommendation scenarios.With respect to user data,a user’s check-in record sequence requires rich social and geographic information.In this paper,we propose two different neural-network models,structural deep network Graph embedding Neural-network Recommendation system(SG-Neu Rec)and Deepwalk on Graph Neural-network Recommendation system(DG-Neu Rec)to improve POI recommendation.combined with embedding representation from social and geographical graph information(called SG-Neu Rec and DG-Neu Rec).Our model naturally combines the embedding representations of social and geographical graph information with user-POI interaction representation and captures the potential user-POI interactions under the framework of the neural network.Finally,we compare the performances of these two models and analyze the reasons for their differences.Results from comprehensive experiments on two real LBSNs datasets indicate the effective performance of our model. 展开更多
关键词 Point-Of-Interest(POI)recommendation graph embedding neural networks Deepwalk deep learning Location-Based Social networks(lbsns)
原文传递
基于时间效应的兴趣点推荐混合模型 被引量:3
2
作者 张岐山 李可 林小榕 《计算机工程》 CAS CSCD 北大核心 2019年第8期203-209,共7页
在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S 个... 在基于位置的社交网络中,兴趣点实时推荐数据和用户签到数据存在高稀疏性问题。提出一种基于时间效应的混合推荐模型。通过用户潜在兴趣点数据模型计算用户时间行为影响分数和地理位置影响分数,并用线性统一模型进行处理,选取Top S 个兴趣点作为用户的潜在兴趣点。将用户的潜在签到记录引入基于时间效应的矩阵分解模型中,考虑时间差异性和连续性对推荐结果的影响,在此基础上进行优化求解,提出推荐策略。实验结果表明,与LRT模型、UTE+SE模型相比,该模型的推荐效果较好,其准确率和召回率最高可达0.103 4和0.111 8。 展开更多
关键词 基于位置的社交网络 时间信息 地理位置信息 矩阵填充 矩阵分解 实时推荐 兴趣点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部