Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering ...Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering applications involving complex and integrated production processes,where high flexibility,manipulability,and maneuverability are desirable characteristics.In this paper,we investigate the distributed coordinated adaptive tracking problem of networked redundant robotic systems with a dynamic leader.We provide an analysis procedure for the controlled synchronization of such systems with uncertain dynamics.We also find that the proposed control strategy does not require computing positional inverse kinematics and does not impose any restriction on the self-motion of the manipulators;therefore,the extra degrees of freedom are applicable for other sophisticated subtasks.Compared with some existing work,a distinctive feature of the designed distributed control algorithm is that only a subset of followers needs to access the position information of the dynamic leader in the task space,where the underlying directed graph has a spanning tree.Subsequently,we present a simulation example to verify the effectiveness of the proposed algorithms.展开更多
针对网络中心化C4ISR系统结构的定量设计与分析问题,以网络中心战结构模型和观察、调整、决策以及行动(observe,orient,decide,act,OODA)过程模型为理论依据,建立了系统结构"五环"概念,采用网络化效能因子(coefficient of net...针对网络中心化C4ISR系统结构的定量设计与分析问题,以网络中心战结构模型和观察、调整、决策以及行动(observe,orient,decide,act,OODA)过程模型为理论依据,建立了系统结构"五环"概念,采用网络化效能因子(coefficient of networked effectiveness,CNE)衡量系统结构的网络化效能,形成系统结构"五环"效能表征模型,并给出了指导网络中心化C4ISR系统结构设计的若干推论,仿真实验验证了表征模型的有效性。展开更多
The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e...The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research.展开更多
Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfectio...Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
The potential of big data fused with the vision of a digital Earth offers powerful opportunities to deepen understanding of the whole Earth system and the management of a sustainable planet.It is important to stand ba...The potential of big data fused with the vision of a digital Earth offers powerful opportunities to deepen understanding of the whole Earth system and the management of a sustainable planet.It is important to stand back from often confusing detail to clarify what those opportunities are and how they might be seized.The essential scientific potential of data,big or small,is to reveal patterns,which have often been the fundamental first step in stimulating inquiry,leading to new questions,new perspectives and potentially to new answers.The digital revolution has created a“digital microscope”that permits us to see patterns that have not been seen before,and when coupled with machine learning technologies to analyse them in creating statistical predictions of the behaviour of both human and non-human systems.These potentials converge with the imperative to represent an Earth system with interacting non-human and human components,as a vital contribution to the understanding and actions required in working towards planetary sustainability.But a digital Earth is also capable of being represented mathematically as a digitally networked phenomenon,analogous to an analogue computer,and should be an important target for a Big Earth Data Journal.We should also return to Al Gore’s vision of an accessible digital Earth with wide usability.Pre-determining the separate functions of parallel digital Earths risks losing one of the great potentials of big data and learning algorithms,the identification and analysis of unanticipated relationships and processes.展开更多
This paper studies the output synchronization problem for a class of networked non-linear multi-agent systems with switching topology and time-varying delays. To synchronize the outputs,a leader is introduced whose co...This paper studies the output synchronization problem for a class of networked non-linear multi-agent systems with switching topology and time-varying delays. To synchronize the outputs,a leader is introduced whose connectivity to the followers varies with time, and a novel data-driven consensus protocol based on model free adaptive control is proposed, where the reference input of each follower is designed to be the time-varying average of the neighboring agents' outputs. Both the case when the leader is with a prescribed reference input and the case otherwise are considered.The proposed protocol allows for time-varying delays, switching topology, and does not use the agent structure or the dynamics information implicitly or explicitly. Sufficient conditions are derived to guarantee the closed-loop stability, and conditions for consensus convergence are obtained, where only a joint spanning tree is required. Numerical simulations and practical experiments are conducted to demonstrate the effectiveness of the proposed protocol.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.1127219110972129 and 10832006)+1 种基金Specialized Research Foundation for the Doctoral Program of Higher Education(Grant No.200802800015)University Natural Science Research Program of Anhui Province(Grant No.KJ2013B216)
文摘Distributed coordinated control of networked robotic systems formulated by Lagrange dynamics has recently been a subject of considerable interest within science and technology communities due to its broad engineering applications involving complex and integrated production processes,where high flexibility,manipulability,and maneuverability are desirable characteristics.In this paper,we investigate the distributed coordinated adaptive tracking problem of networked redundant robotic systems with a dynamic leader.We provide an analysis procedure for the controlled synchronization of such systems with uncertain dynamics.We also find that the proposed control strategy does not require computing positional inverse kinematics and does not impose any restriction on the self-motion of the manipulators;therefore,the extra degrees of freedom are applicable for other sophisticated subtasks.Compared with some existing work,a distinctive feature of the designed distributed control algorithm is that only a subset of followers needs to access the position information of the dynamic leader in the task space,where the underlying directed graph has a spanning tree.Subsequently,we present a simulation example to verify the effectiveness of the proposed algorithms.
文摘针对网络中心化C4ISR系统结构的定量设计与分析问题,以网络中心战结构模型和观察、调整、决策以及行动(observe,orient,decide,act,OODA)过程模型为理论依据,建立了系统结构"五环"概念,采用网络化效能因子(coefficient of networked effectiveness,CNE)衡量系统结构的网络化效能,形成系统结构"五环"效能表征模型,并给出了指导网络中心化C4ISR系统结构设计的若干推论,仿真实验验证了表征模型的有效性。
基金supported by the Australian Research Council Discovery Early Career Researcher Award(No.DE200101128).
文摘The efficient utilization of computation and communication resources became a critical design issue in a wide range of networked systems due to the finite computation and processing capabilities of system components(e.g., sensor, controller) and shared network bandwidth. Event-triggered mechanisms(ETMs) are regarded as a major paradigm shift in resource-constrained applications compared to the classical time-triggered mechanisms, which allows a trade-off to be achieved between desired control/estimation performance and improved resource efficiency. In recent years, dynamic event-triggered mechanisms(DETMs) are emerging as a promising enabler to fulfill more resource-efficient and flexible design requirements. This paper provides a comprehensive review of the latest developments in dynamic event-triggered control and estimation for networked systems. Firstly, a unified event-triggered control and estimation framework is established, which empowers several fundamental issues associated with the construction and implementation of the desired ETM and controller/estimator to be systematically investigated. Secondly, the motivations of DETMs and their main features and benefits are outlined. Then, two typical classes of DETMs based on auxiliary dynamic variables(ADVs) and dynamic threshold parameters(DTPs) are elaborated. In addition, the main techniques of constructing ADVs and DTPs are classified, and their corresponding analysis and design methods are discussed. Furthermore, three application examples are provided to evaluate different ETMs and verify how and under what conditions DETMs are superior to their static and periodic counterparts. Finally, several challenging issues are envisioned to direct the future research.
基金supported by the Deanship of Scientific Research(DSR) at KFUPM through Research Project(IN141048)
文摘Abstract--This paper provides a survey on modeling and theories of networked control systems (NCS). In the first part, modeling of the different types of imperfections that affect NCS is discussed. These imperfections are quantization errors, packet dropouts, variable sampling/transmission intervals, vari- able transmission delays, and communication constraints. Then follows in the second part a presentation of several theories that have been applied for controlling networked systems. These theories include: input delay system approach, Markovian system approach, switched system approach, stochastic system approach, impulsive system approach, and predictive control approach. In the last part, some advanced issues in NCS including decentral- ized and distributed NCS, cloud control system, and co-design of NCS are reviewed. Index Terms--Decentralized networked control systems (NCS), distributed networked control systems, network constraints, net- worked control system, quantization, time delays.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
文摘The potential of big data fused with the vision of a digital Earth offers powerful opportunities to deepen understanding of the whole Earth system and the management of a sustainable planet.It is important to stand back from often confusing detail to clarify what those opportunities are and how they might be seized.The essential scientific potential of data,big or small,is to reveal patterns,which have often been the fundamental first step in stimulating inquiry,leading to new questions,new perspectives and potentially to new answers.The digital revolution has created a“digital microscope”that permits us to see patterns that have not been seen before,and when coupled with machine learning technologies to analyse them in creating statistical predictions of the behaviour of both human and non-human systems.These potentials converge with the imperative to represent an Earth system with interacting non-human and human components,as a vital contribution to the understanding and actions required in working towards planetary sustainability.But a digital Earth is also capable of being represented mathematically as a digitally networked phenomenon,analogous to an analogue computer,and should be an important target for a Big Earth Data Journal.We should also return to Al Gore’s vision of an accessible digital Earth with wide usability.Pre-determining the separate functions of parallel digital Earths risks losing one of the great potentials of big data and learning algorithms,the identification and analysis of unanticipated relationships and processes.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61333003 and 61773144
文摘This paper studies the output synchronization problem for a class of networked non-linear multi-agent systems with switching topology and time-varying delays. To synchronize the outputs,a leader is introduced whose connectivity to the followers varies with time, and a novel data-driven consensus protocol based on model free adaptive control is proposed, where the reference input of each follower is designed to be the time-varying average of the neighboring agents' outputs. Both the case when the leader is with a prescribed reference input and the case otherwise are considered.The proposed protocol allows for time-varying delays, switching topology, and does not use the agent structure or the dynamics information implicitly or explicitly. Sufficient conditions are derived to guarantee the closed-loop stability, and conditions for consensus convergence are obtained, where only a joint spanning tree is required. Numerical simulations and practical experiments are conducted to demonstrate the effectiveness of the proposed protocol.