基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传...基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传播作为初始种群的产生方法;综上,提出了一个结合局部搜索的遗传算法(Genetic algorithm with local search,LGA).在基准网络及大规模复杂网络上对LGA进行测试,并与当前具有代表性的社区探测算法进行比较,实验结果表明了文中算法的有效性与高效性.展开更多
文摘基于遗传算法的复杂网络社区探测是当前的研究热点.针对该问题,本文在分析网络模块性函数Q的局部单调性的基础上,给出一种快速、有效的局部搜索变异策略,同时为兼顾初始种群的精度和多样性以达到进一步提高搜索效率的目的,采用了标签传播作为初始种群的产生方法;综上,提出了一个结合局部搜索的遗传算法(Genetic algorithm with local search,LGA).在基准网络及大规模复杂网络上对LGA进行测试,并与当前具有代表性的社区探测算法进行比较,实验结果表明了文中算法的有效性与高效性.