期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Intrusion detection systems for wireless sensor networks using computational intelligence techniques 被引量:1
1
作者 Vaishnavi Sivagaminathan Manmohan Sharma Santosh Kumar Henge 《Cybersecurity》 EI CSCD 2024年第2期81-95,共15页
Network Intrusion Detection Systems(NIDS)are utilized to find hostile network connections.This can be accom-plished by looking at traffic network activity,but it takes a lot of work.The NIDS heavily utilizes approache... Network Intrusion Detection Systems(NIDS)are utilized to find hostile network connections.This can be accom-plished by looking at traffic network activity,but it takes a lot of work.The NIDS heavily utilizes approaches for data extraction and machine learning to find anomalies.In terms of feature selection,NIDS is far more effective.This is accurate since anomaly identification uses a number of time-consuming features.Because of this,the feature selec-tion method influences how long it takes to analyze movement patterns and how clear it is.The goal of the study is to provide NIDS with an attribute selection approach.PSO has been used for that purpose.The Network Intrusion Detection System that is being developed will be able to identify any malicious activity in the network or any unusual behavior in the network,allowing the identification of the illegal activities and safeguarding the enormous amounts of confidential data belonging to the customers from being compromised.In the research,datasets were produced utilising both a network infrastructure and a simulation network.Wireshark is used to gather data packets whereas Cisco Packet Tracer is used to build a network in a simulated environment.Additionally,a physical network consisting of six node MCUs connected to a laptop and a mobile hotspot,has been built and communication packets are being recorded using the Wireshark tool.To train several machine learning models,all the datasets that were gatheredcre-ated datasets from our own studies as well as some common datasets like NSDL and UNSW acquired from Kaggle-were employed.Additionally,PsO,which is an optimization method,has been used with these ML algorithms for feature selection.In the research,KNN,decision trees,and ANN have all been combined with PSO for a specific case study.And it was found demonstrated the classification methods PSO+ANN outperformed PSO+KNN and PSO+DT in this case study. 展开更多
关键词 network intrusion detection systems(nids) Cisco packet tracer Wireshark tool Machine learning PSO CYBERSECURITY Optimization
原文传递
网络入侵检测系统的负载均衡方案 被引量:2
2
作者 陈宇 梁刚 李涛 《计算机工程与应用》 CSCD 北大核心 2011年第7期117-119,142,共4页
在高速网络环境下,数据流的高速化使得网络入侵检测系统往往会出现严重的漏报率,针对此性能瓶颈,提出了一种基于预测的并行入侵检测系统的负载均衡方案。该方案主动测量各探测器的负载为预测依据,采用混沌时间序列的全域预测法为预测手... 在高速网络环境下,数据流的高速化使得网络入侵检测系统往往会出现严重的漏报率,针对此性能瓶颈,提出了一种基于预测的并行入侵检测系统的负载均衡方案。该方案主动测量各探测器的负载为预测依据,采用混沌时间序列的全域预测法为预测手段,利用预测的负载值为负载均衡的根据。通过仿真实验,证明了该方案的可行性及有效性,它能有效地均衡负载、减少系统的丢包率。 展开更多
关键词 网络入侵检测系统 负载均衡 预测
下载PDF
基于GPU的高速网络入侵检测系统设计 被引量:1
3
作者 卢永菁 王东 《计算机工程与应用》 CSCD 北大核心 2011年第33期78-81,共4页
随着网络带宽的不断增加,以及处理能力的限制,传统的网络入侵检测系统(Network Intrusion Detecting System,NIDS)面临挑战,如何提高NIDS的处理能力备受关注。通过专用设备提高检测速度,不但价格昂贵且无法大规模普及。通过对Linux网络... 随着网络带宽的不断增加,以及处理能力的限制,传统的网络入侵检测系统(Network Intrusion Detecting System,NIDS)面临挑战,如何提高NIDS的处理能力备受关注。通过专用设备提高检测速度,不但价格昂贵且无法大规模普及。通过对Linux网络协议栈的优化,以及常用入侵检测系统Snort的多线程化,结合了图形处理器(Graphic Processing Unit,GPU)的高性能并行计算能力,设计了一种高性能的软件入侵检测架构,突破现有NIDS使用普通CPU的计算瓶颈,以应对高速链路对入侵检测性能的要求。实验结果表明,高速网络中的数据包可以采用GPU来处理。 展开更多
关键词 网络入侵检测系统(nids) 图形处理器(GPU) SNORT 并行计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部