期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
A Self-Organizing RBF Neural Network Based on Distance Concentration Immune Algorithm 被引量:4
1
作者 Junfei Qiao Fei Li +2 位作者 Cuili Yang Wenjing Li Ke Gu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期276-291,共16页
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis... Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors. 展开更多
关键词 Distance concentration immune algorithm(DCIA) information processing strength(IPS) radial basis function neural network(rbfnn)
下载PDF
A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC 被引量:4
2
作者 Yanhong Luo Shengnan Zhao +1 位作者 Dongsheng Yang Huaguang Zhang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期48-56,共9页
For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we prese... For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Backstepping control radial basis function neural network(rbfnn) robust adaptive control thyristor controlled series compensation(TCSC) uniform ultimate boundedness(UUB)
下载PDF
An intelligent approach for flight risk prediction under icing conditions
3
作者 Guozhi WANG Haojun XU Binbin PEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期109-127,共19页
Flight risk prediction is significant in improving the flight crew's situational awareness because it allows them to adopt appropriate operation strategies to prevent risk expansion caused by abnormal conditions,e... Flight risk prediction is significant in improving the flight crew's situational awareness because it allows them to adopt appropriate operation strategies to prevent risk expansion caused by abnormal conditions,especially aircraft icing conditions.The flight risk space representing the nonlinear mapping relations between risk degree and the three-dimensional commanded vector(commanded airspeed,commanded bank angle,and commanded vertical velocity)is developed to provide the crew with practical risk information.However,the construction of flight risk space by means of computational flight dynamics suffers from certain defects,including slow computing speed.Accordingly,an intelligent approach for flight risk prediction is proposed to address these defects based on neural networks.Radial Basis Function Neural Network(RBFNN)is optimized using Adaptive Particle Swarm Optimization(APSO).To optimize both the parameters and the structure of APSO-RBFNN,a fitness function containing the training accuracy and network structure size is proposed.Extensive experimental results demonstrate that the flight risk predicted by APSO-RBFNN is very close to that obtained via computational flight dynamics.The average error(RMSE)is less than 10^(-1).The approach achieves a speedup close to 1000x compared with computational flight dynamics.In addition,some flight upset and recovery cases are presented to illustrate the efficiency of the intelligent approach for flight risk prediction. 展开更多
关键词 Adaptive Particle Swarm Optimization(APSO) Flight risk assessment and prediction Flight risk space Icing conditions Radial Basis Function Neural network(rbfnn)
原文传递
Satellite Image Classification Using a Hybrid Manta Ray Foraging Optimization Neural Network
4
作者 Amit Kumar Rai Nirupama Mandal +1 位作者 Krishna Kant Singh Ivan Izonin 《Big Data Mining and Analytics》 EI CSCD 2023年第1期44-54,共11页
A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious ta... A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods. 展开更多
关键词 Radial Basis Function Neural network(rbfnn) Manta Ray Foraging Optimization algorithm(MRFO) Landsat 8 classification change detection disaster mitigation PLANNING
原文传递
Quantitative analysis of multicomponent mud logging gas based on infrared spectra 被引量:3
5
作者 SONG Li-mei GUO Su-qing +3 位作者 YANG Yan-gang GUO Qing-hua WANG Hong-yi XIONG Hui 《Optoelectronics Letters》 EI 2019年第4期312-316,共5页
This work deals with quantitative analysis of multicomponent mud logging gas based on infrared spectra. An accurate analysis method is proposed by combining a genetic algorithm(GA) and a radial basis function neural n... This work deals with quantitative analysis of multicomponent mud logging gas based on infrared spectra. An accurate analysis method is proposed by combining a genetic algorithm(GA) and a radial basis function neural network(RBFNN).The GA is used to screen the infrared spectrum of the mixed gas, while the selected spectral region is used as the input of the RBFNN to establish a calibration model to quantitatively analyze the components of logging gas. The analysis results demonstrate that the proposed GA-RBFNN performs better than FS-RBFNN and ES-RBFNN, and our proposed method is feasible. 展开更多
关键词 GENETIC algorithm(GA) RADIAL BASIS function neural network(rbfnn) infrared SPECTRA
原文传递
An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging 被引量:2
6
作者 江沸菠 戴前伟 董莉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2129-2138,共10页
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite... To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion. 展开更多
关键词 electrical resistivity imaging nonlinear inversion information criterion(IC) radial basis function neural networkrbfnn particle swarm optimization(PSO)
下载PDF
Modeling and robust adaptive control for a coaxial twelve-rotor UAV
7
作者 Pei Xinbiao Peng Cheng +2 位作者 Bai Yue Wu Helong Ma Ping 《High Technology Letters》 EI CAS 2019年第2期137-143,共7页
Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust ada... Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests. 展开更多
关键词 coaxial twelve-rotor unmanned aerial vehicle(UAV) backstepping sliding mode controller(BSMC) adaptive radial basis function neural network(rbfnn) external disturbances
下载PDF
自适应粒子群优化算法优化径向基函数神经网络用于电阻抗成像图像重建 被引量:39
8
作者 吴阳 刘凯 +2 位作者 陈柏 李芳 姚佳烽 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第6期240-249,共10页
电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 ... 电阻抗成像(EIT)的图像重建是一个高度非线性且欠定的病态逆问题。由于传统方法无法达到很高的精度,并且重建过程通常很耗时,提出了一种基于自适应粒子群优化算法的径向基函数神经网络(APSO-RBFNN)用于图像重建。通过数值模拟建立了15 000个仿真样本,分为训练集和测试集。经过网络训练后,测试集上的图像相关系数(ICC)为0.95,仿真结果验证了APSO-RBFNN方法的有效性。当将30、40和50 dB的高斯白噪声添加到测试集中,ICC分别为0.90、0.92和0.93,证明了该方法的鲁棒性。对包含更多目标的样本重建结果说明了该方法具有良好的泛化能力。此外,8电极EIT系统的实验数据测试结果表明,相比于Tikhonov和RBFNN方法,APSO-RBFNN方法具有更好的图像重建结果。 展开更多
关键词 电阻抗成像 图像重建 逆问题 自适应粒子群优化算法 径向基函数神经网络
下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
9
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向基函数神经网络 自适应粒子群优化 量子比特 流量预测
下载PDF
基于油中溶解气体分析数据挖掘的变压器绝缘故障诊断 被引量:22
10
作者 董立新 肖登明 +1 位作者 李喆 刘奕路 《电力系统自动化》 EI CSCD 北大核心 2004年第15期85-89,共5页
充分利用粗糙集理论对知识的约简能力与模糊径向基函数(RBF)神经网络优良的分类诊断能力,基于粗糙集与RBF网络实现数据挖掘的电力变压器绝缘故障诊断。该方法一方面将粗糙集作为RBF神经网络的前置,对经离散化的样本集进行约简,形成精简... 充分利用粗糙集理论对知识的约简能力与模糊径向基函数(RBF)神经网络优良的分类诊断能力,基于粗糙集与RBF网络实现数据挖掘的电力变压器绝缘故障诊断。该方法一方面将粗糙集作为RBF神经网络的前置,对经离散化的样本集进行约简,形成精简的规则集,将高于一定可信度的挖掘规则用于电力变压器故障诊断;另一方面,将粗糙集挖掘的低于可信度要求的规则所对应的挖掘样本,作为模糊RBF神经网络的训练样本集,同时将粗糙集对这些样本的聚类结果作为模糊RBF神经网络的聚类因子,在此基础上构建改进的4层RBF神经网络,用来诊断不能用粗糙集挖掘的规则诊断的事例。经检验,系统具有较好的分类诊断能力。 展开更多
关键词 故障诊断 变压器 粗糙集 径向基函数神经网络 数据挖掘
下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:30
11
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKSTEPPING Control theory Design Functions Hypersonic aerodynamics Hypersonic vehicles Navigation Radial basis function networks Sliding mode control Uncertainty analysis Vehicles
下载PDF
RBF网络在交通流模型辨识中的应用 被引量:21
12
作者 罗赞文 吴志坚 韩曾晋 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2001年第9期106-110,共5页
利用径向基函数 (RBF)人工神经网络来逼近已知的交通流非线性解析模型 ,讨论了高速公路交通流模型的辨识问题。提出了一种带反馈的 RBF网络模型 ,讨论了其训练算法。算法分两步实现 ,第一步利用一种改进的聚类分析方法确定隐层节点核函... 利用径向基函数 (RBF)人工神经网络来逼近已知的交通流非线性解析模型 ,讨论了高速公路交通流模型的辨识问题。提出了一种带反馈的 RBF网络模型 ,讨论了其训练算法。算法分两步实现 ,第一步利用一种改进的聚类分析方法确定隐层节点核函数的中心点 ,第二步用最小二乘法确定从隐层到输出层的连接权。最后将训练好的网络模型和给定的解析模型同时进行仿真计算 ,得出了当某路段出现突发性交通事故时交通流密度和平均速度的变化曲线。仿真结果说明 展开更多
关键词 径向基函数网络 聚类 人工神经网络 高速公路 交通流模型
原文传递
基于径向基函数神经网络的高光谱遥感图像分类 被引量:22
13
作者 谭琨 杜培军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2008年第9期2009-2013,共5页
从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。... 从径向基函数神经网络的理论出发,针对高光谱数据的特点,设计了有效的特征提取模型,再与径向基函数神经网络的输入层连接,建立了一个新的径向基函数神经网络的高光谱遥感影像分类模型,并用国产OMISII传感器获得的64波段数据进行试验。首先进行了最小噪声分离变换,提取了1~20个分量的数据,使用提取后的数据(20维)、提取后数据的纹理变换(20维)和主成分分析的前(20维),组成了60维向量数据进行分类处理,这种分类器结构简单、容易训练、收敛速度快,其分类精度达到69.27%,高于BP神经网络分类算法(51.20%)以及常用的最小距离分类(MDC)算法(40.88%)。通过对结果和过程进行分析,实验证明径向基函数神经网络在高光谱遥感分类中具有较好的适用性。 展开更多
关键词 高光谱遥感图像 径向基函数神经网络 分类
下载PDF
RBF神经网络在物流系统中的应用 被引量:19
14
作者 陈以 万梅芳 《计算机仿真》 CSCD 北大核心 2010年第4期159-162,共4页
物流已经成为我们国民经济的动脉,但是影响其成本的因素过多且复杂,对其成本的研究目前较多的是采用简单的猜测式赋值,这样的方法具有较大的主观性,因此物流成本预测这个复杂的非线性问题已经成了物流界研究的重点问题。将社会物流系统... 物流已经成为我们国民经济的动脉,但是影响其成本的因素过多且复杂,对其成本的研究目前较多的是采用简单的猜测式赋值,这样的方法具有较大的主观性,因此物流成本预测这个复杂的非线性问题已经成了物流界研究的重点问题。将社会物流系统看出了一个投入产出系统,将其物流成本——运输费用、保管费用和管理费用当作了投入,而社会的消费总额看成了产出,因此导出物流消费品总额和成本之间的映射关系模型;其次,提出用改进的自适应遗传算法对径向基函数神经网络进行了优化,得到了最佳的基函数中心和宽度值;最好用优化后的径向基函数神经网络应用于物流成本的预测,结果表明,模型具有好的稳定性和较高的精度,对扩大消费、拉动内需具有一定的参考意义。 展开更多
关键词 遗传算法 径向基函数神经网络 预测 物流系统
下载PDF
不平衡数据分类的混合算法 被引量:18
15
作者 韩敏 朱新荣 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第10期1485-1489,共5页
针对传统分类算法处理不平衡数据时,小类的分类精度过低问题,提出一种径向基函数神经网络和随机森林集成的混合分类算法.在小类样本之间用随机插值方式平衡数据集的分布,利用受试者特征曲线在置信度为95%下的面积为标准去除冗余特征;之... 针对传统分类算法处理不平衡数据时,小类的分类精度过低问题,提出一种径向基函数神经网络和随机森林集成的混合分类算法.在小类样本之间用随机插值方式平衡数据集的分布,利用受试者特征曲线在置信度为95%下的面积为标准去除冗余特征;之后对输入数据用Bagging技术进行扰动,并以径向基函数神经网络作为随机森林中的基分类器,采用绝大多数投票方法进行决策的融合和输出.将该算法应用于UCI数据,以G均值和受试者特征曲线下的面积为评判标准,结果表明该方法能够有效地提高中度和高度不平衡数据的分类精度. 展开更多
关键词 不平衡数据 随机森林 径向基函数神经网络 受试者特征曲线
下载PDF
用于遥感图象分类的神经网络的构造 被引量:9
16
作者 张建宝 陈晓锋 刘建华 《中国图象图形学报(A辑)》 CSCD 1999年第10期831-834,共4页
径向基函数神经网络和多层感知器神经网络具有相似的拓扑结构,它们大都用于目标的分类。对两种模型进行了比较,提出了一个构造径向基函数神经网络分类器的有效方法,并把构造的分类器用于遥感图象的分类实验。
关键词 感知器 神经网络 构造 遥感图象 分类
下载PDF
空间微重力环境地面模拟系统的控制器设计 被引量:17
17
作者 陈三风 梅涛 +1 位作者 张涛 汪小华 《机器人》 EI CSCD 北大核心 2008年第3期201-204,共4页
针对小型和迷你型试验目标,提出一种新的空间微重力环境模拟系统.系统采用平面气浮和气缸垂直悬浮组合方案来模拟空间微重力环境,并采用恒张力控制思想来模拟垂直地面方向上的微重力状态.采用RBF神经网络控制和滑模变结构控制复合控制方... 针对小型和迷你型试验目标,提出一种新的空间微重力环境模拟系统.系统采用平面气浮和气缸垂直悬浮组合方案来模拟空间微重力环境,并采用恒张力控制思想来模拟垂直地面方向上的微重力状态.采用RBF神经网络控制和滑模变结构控制复合控制方案,其中RBF神经网络用于逼近和补偿系统的不确定信息,并作为前馈补偿使跟踪误差快速收敛;通过滑模变结构控制消除RBF神经网络的逼近误差和不定随机干扰的影响,保证系统的鲁棒性.实验研究结果表明,该控制方案是有效的,系统具有较好的动态响应能力、鲁棒性和自适应能力. 展开更多
关键词 微重力 气缸 RBF神经网络 滑模控制
下载PDF
改进的粒子群算法对RBF神经网络的优化 被引量:16
18
作者 夏轩 许伟明 《计算机工程与应用》 CSCD 2012年第5期37-40,共4页
为了改进神经网络模型结构和参数的设置方法,提出了一种改进的粒子群优化径向基函数(RBF)神经网络的方法。该方法通过动态调整粒子群算法中的惯性权重因子,提高了算法的收敛速度和搜索全局最优值的能力。实验结果表明:基于改进的PSO算... 为了改进神经网络模型结构和参数的设置方法,提出了一种改进的粒子群优化径向基函数(RBF)神经网络的方法。该方法通过动态调整粒子群算法中的惯性权重因子,提高了算法的收敛速度和搜索全局最优值的能力。实验结果表明:基于改进的PSO算法训练的神经网络在函数逼近性能上优于自组织选取中心算法与标准PSO算法,提高了网络泛化能力和优化效果,有效地增强了网络对非线性问题的处理能力。 展开更多
关键词 粒子群算法 径向基神经网络 惯性权重因子
下载PDF
RBF网络分类器的实现及应用 被引量:8
19
作者 张建宝 慈林林 +1 位作者 赵宗涛 陈晓峰 《计算机工程与科学》 CSCD 2001年第6期105-107,共3页
径向基函数神经网络通过中间层神经元的非线性传递 ,能够实现任意的从输入空间到输出空间的映射 ,因此大都用于目标分类。本文利用快速聚类和统计的方法确定网络的中间层及中间层到输出层间的权值 ,并把构造的分类器用于遥感图象目标分... 径向基函数神经网络通过中间层神经元的非线性传递 ,能够实现任意的从输入空间到输出空间的映射 ,因此大都用于目标分类。本文利用快速聚类和统计的方法确定网络的中间层及中间层到输出层间的权值 ,并把构造的分类器用于遥感图象目标分类识别实验 。 展开更多
关键词 径向基函数神经网络 线性判别函数 RBF网络 分类器
下载PDF
基于RBF神经网络的参数自适应PID变桨控制器的设计 被引量:15
20
作者 张真源 刘国荣 +2 位作者 杨小亮 刘科正 邓争 《电力系统及其自动化学报》 CSCD 北大核心 2020年第5期16-23,共8页
自然界风速的多变性与风机变桨系统的迟缓性会导致风机输出功率的不稳定。为了改善风机输出功率的稳定,首先基于RBF神经网络RBFNN(radial basis function neural network),以功率差作为信号来源,设计了RBF-PID自适应变桨控制器,建立了... 自然界风速的多变性与风机变桨系统的迟缓性会导致风机输出功率的不稳定。为了改善风机输出功率的稳定,首先基于RBF神经网络RBFNN(radial basis function neural network),以功率差作为信号来源,设计了RBF-PID自适应变桨控制器,建立了风力机及变桨距机构仿真模型。其次,建立了2种风况模型,较好地模拟了自然界基本风况。仿真表明:在不同风况下对比常规模糊控制与PID控制,RBF-PID参数自适应方法在风速波动较大的情况下能够更好地稳定输出功率,且减小了变桨的幅值与频率,增加了风机的寿命。 展开更多
关键词 径向基神经网络 变桨距 参数自适应 功率稳定
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部