目的:目的:探讨通过膈肌电活动(electrical activity of the diaphragm,EAdi)监测技术评价膈肌功能指标,明确膈肌电活动监测技术在神经危重症患者呼吸机撤机中的指导价值。方法:选取2019年3月—2021年7月收治的皖南医学院第一附属医院...目的:目的:探讨通过膈肌电活动(electrical activity of the diaphragm,EAdi)监测技术评价膈肌功能指标,明确膈肌电活动监测技术在神经危重症患者呼吸机撤机中的指导价值。方法:选取2019年3月—2021年7月收治的皖南医学院第一附属医院神经外科ICU行机械通气时间大于24h并且符合撤机条件的患者共52例。所有患者撤机前均经鼻植入膈肌电活动(EAdi)监测导管并采用低水平压力支持通气(PSV)进行自主呼吸实验(spontaneous breathing trial,SBT)30min,记录SBT结束时的生命体征、动脉血气、机械通气参数及膈肌功能指标[主要包括膈肌电活动峰值(EAdimax)、膈肌电活动低值(EAdimin)、神经通气耦联指数(NVE)、神经机械耦联指数(NME)]。根据撤机结果将患者分为撤机成功组和撤机失败组,采用受试者工作特征曲线(ROC)评价各膈肌指标预测撤机成功的价值。结果:52例患者中撤机成功(成功组)38例,撤机失败(失败组)14例。两组患者SBT结束时,在生命体征方面:成功组心率(HR)、呼吸频率(RR)均显著低于失败组[HR:74(66.5~83)vs 92(72.75~102)次/min,RR:19(14.75~25.25)vs 27.5(18.5~31)次/min,P<0.05]。在动脉血气方面:成功组的PaCO_(2),显著高于失败组[33.8(32~35)vs 30.55(29.5~33.8)mmHg,P<0.05]。在机械通气参数监测方面均无显著差异(P>0.05)。在膈肌功能方面:成功组的NVE、NME、NVE×NME均显著高于失败组[NVE:99.5(92~142)vs 91.5(25.5~96.5)mL/μV、NME:2.25(1.9~3.3)vs 1.85(0.88~2.3)cmH_(2)O/μV、NVE×NME:265.05(199.48~303.6)vs182.9(20.33~242.64)mL×cmH_(2)O/μV^(2),P<0.05]。当NVE的最佳临界值为59.15 mL/μV时,预测撤机成功的敏感度为100%,特异度为42.9%,ROC曲线下面积(AUC)为0.727(95%CI:0.567~0.888);当NME的最佳临界值为1.83 cmH_(2)O/μV时,预测撤机成功的敏感度为86.80%,特异度为50%,ROC曲线下面积(AUC)为0.736(95%CI:0.581~0.891);当NVE×NME的最佳临界值为76.4 mL×cmH_(2)O/μV^(2)时,预测撤机成功的敏感度�展开更多
The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with p...The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with periodical output. The second part is a neural pathway (NP) that generates the time delay characteristic of various gait patterns. The last part is a locomotion nerve center ( LNC ) that decides the frequency of the CPG output and generates orderly phase delay by changing the pa- rameters of NP. And then signals that fit for different gaits can be obtained through the regulation of LNC. Experiments are implemented with a robot following mathematical simulation of the controller. The experimental results show that various gait patterns can be realized successfully with the method proposed in this paper.展开更多
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘The orderly delay control technique for a new type of arthropod robot is studied in this pa- per. The orderly delay controller is composed of three parts. The first part is a central pattern gener- ator (CPG) with periodical output. The second part is a neural pathway (NP) that generates the time delay characteristic of various gait patterns. The last part is a locomotion nerve center ( LNC ) that decides the frequency of the CPG output and generates orderly phase delay by changing the pa- rameters of NP. And then signals that fit for different gaits can be obtained through the regulation of LNC. Experiments are implemented with a robot following mathematical simulation of the controller. The experimental results show that various gait patterns can be realized successfully with the method proposed in this paper.