期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
不同理性两个体捕捞公共渔业资源的非线性分析 被引量:8
1
作者 顾恩国 褚青涛 《中南民族大学学报(自然科学版)》 CAS 2009年第2期109-115,118,共8页
在假设不同理性两个体博弈公共渔业资源的基础上,建立了不同理性两个体捕捞渔业资源的模型,重点研究了该系统不动点的存在性和稳定性,并且通过数值模拟分析了该系统在不同参数下的动态行为,研究发现:当市场参与者为了使自己在竞争中处... 在假设不同理性两个体博弈公共渔业资源的基础上,建立了不同理性两个体捕捞渔业资源的模型,重点研究了该系统不动点的存在性和稳定性,并且通过数值模拟分析了该系统在不同参数下的动态行为,研究发现:当市场参与者为了使自己在竞争中处于有利位置,加快捕捞调整速度时,就会使系统出现复杂的动力学行为,即可能出现Neimark分叉和反向的倍周期分叉.资源储量可能出现不可预测的准周期波动甚至随机的混沌波动. 展开更多
关键词 有限理性 不同理性 正平衡点 neimark分叉 混沌状态
下载PDF
The behavior of a host-parasitoid model with host logistic growth and proportional refuge
2
作者 Senada Kalabusic Esmir Pilav 《International Journal of Biomathematics》 SCIE 2024年第5期33-78,共46页
This paper deals with the host-parasitoid model,where the logistic equation governs the host population growth,and a proportion of the host population can find refuge.The equilibrium points'existence,number,and lo... This paper deals with the host-parasitoid model,where the logistic equation governs the host population growth,and a proportion of the host population can find refuge.The equilibrium points'existence,number,and local character are discussed.Taking the parameter regulating the parasitoid's growth as a bifurcation parameter,we prove that Neimark-Sacker and period-doubling bifurcations occur.Despite the complex behavior,it can be proved that the system is permanent,ensuring the long-term survival of both populations.Furthermore,it was observed that the presence of the proportional refuge does not significantly influence the system's behavior compared to the system without aproportional refuge. 展开更多
关键词 Difference equations host-parasitoid neimark-Sacker bifurcation perioddoubling bifurcation PERMANENCE stability
原文传递
Bifurcations,chaos analysis and control in a discrete predator-prey model with mixed functional responses
3
作者 Yajie Sun Ming Zhao Yunfei Du 《International Journal of Biomathematics》 SCIE 2024年第3期185-210,共26页
Many discrete systems have more distinctive dynamical behaviors compared to continuous ones,which has led lots of researchers to investigate them.The discrete predatorprey model with two different functional responses... Many discrete systems have more distinctive dynamical behaviors compared to continuous ones,which has led lots of researchers to investigate them.The discrete predatorprey model with two different functional responses(Holling type I and II functional responses)is discussed in this paper,which depicts a complex population relationship.The local dynamical behaviors of the interior fixed point of this system are studied.The detailed analysis reveals this system undergoes flip bifurcation and Neimark-Sacker bifurcation.Especially,we prove the existence of Marotto's chaos by analytical method.In addition,the hybrid control method is applied to control the chaos of this system.Numerical simulations are presented to support our research and demonstrate new dynamical behaviors,such as period-10,19,29,39,48 orbits and chaos in the sense of Li-Yorke. 展开更多
关键词 Predator-prey model flip bifurcation neimark-Sacker bifurcation Marotto's chaos chaos control
原文传递
Codimension-2 bifurcation in a discrete predator-prey system with constant yield predator harvesting
4
作者 Anuraj Singh Vijay Shankar Sharma 《International Journal of Biomathematics》 SCIE 2023年第5期165-191,共27页
This work investigates the bifurcation analysis in a discrete-time Leslie-Gower predatorprey model with constant yield predator harvesting.The stability analysis for the fixed points of the discretized model is shown ... This work investigates the bifurcation analysis in a discrete-time Leslie-Gower predatorprey model with constant yield predator harvesting.The stability analysis for the fixed points of the discretized model is shown briefy.In this study,the model undergoes codimension-1 bifurcation such as fold bifurcation(limit point),flip bifurcation(perioddoubling)and Neimark-Sacker bifurcation at a positive fixed point.Further,the model exhibits codimension-2 bifurcations,including Bogdanov-Takens bifurcation and generalized fip bifurcation at the fixed point.For each bifurcation,by using the critical normal form coefficient method,various critical states are calculated.To validate our analytical findings,the bifurcation curves of fixed points are drawn by using MATCONTM.The system exhibits interesting rich dynamics including limit cycles and chaos.Moreover,it has been shown that the predator harvesting may control the chaos in the system. 展开更多
关键词 Flip bifurcation neimark-Sacker bifurcation generalized fip bifurcation Bogdanov-Takens bifurcation HARVESTING
原文传递
Analytical bifurcation and strong resonances of a discrete Bazykin-Berezovskaya predator-prey model with Allee effect
5
作者 Sanaa Moussa Salman A.A.Elsadany 《International Journal of Biomathematics》 SCIE 2023年第8期155-190,共36页
This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin-Berezovskaya predator-prey model in depth using analytical and numerical bifurcation analysis.The stability conditions of fix... This paper investigates multiple bifurcations analyses and strong resonances of the Bazykin-Berezovskaya predator-prey model in depth using analytical and numerical bifurcation analysis.The stability conditions of fixed points,codim-1 and codim-2 bifurcations to include multiple and generic bifurcations are studied.This model exhibits transcritical,fip,Neimark-Sacker,and 1:2,1:3,1:4 strong resonances.The normal form coefficients and their scenarios for each bifurcation are examined by using the normal form theorem and bifurcation theory.For each bifurcation,various types of critical states are calculated,such as potential transformations between the one-parameter bifurcation point and different bifurcation points obtained from the two-parameter bifurcation point.To validate our analytical findings,the bifurcation curves of fixed points are determined by using MatcontM. 展开更多
关键词 Bazykin Berezovskaya model neimark-Sacker bifurcation fip bifurcation transcritical bifurcation strong resonances bifurcation
原文传递
Qualitative behavior of discrete-time Caputo-Fabrizio logistic model with Allee effect
6
作者 Hatice Karakaya Senol Kartal ilhan Oztirk 《International Journal of Biomathematics》 SCIE 2024年第4期217-234,共18页
The aim of this paper is to investigate the dynamic behaviors of fractional-order logistic model with Allee effects in Caputo-Fabrizio sense.First of all,we apply the two-step Adams-Bashforth scheme to discretize the ... The aim of this paper is to investigate the dynamic behaviors of fractional-order logistic model with Allee effects in Caputo-Fabrizio sense.First of all,we apply the two-step Adams-Bashforth scheme to discretize the fractional-order logistic differential equation and obtain the two-dimensional discrete system.The parametric conditions for local asymptotic stability of equilibrium points are obtained by Schur-Chon criterion.Moreover,we discuss the existence and direction for Neimark-Sacker bifurcations with the help of center manifold theorem and bifurcation theory.Numerical simulations are provided to illustrate theoretical discussion.It is observed that Allee effect plays an important role in stability analysis.Strong Allee effect in population enhances the stability of the coexisting steady state.In additional,the effect of fractional-order derivative on dynamic behavior of the system is also investigated. 展开更多
关键词 Caputo-Fabrizio fractional derivative two-step Adams-Basforth method logistic differential equation neimark-Sacker bifurcation Allee effect
原文传递
Complex dynamics and bifurcation analysis for a Beverton-Holt population model with Allee effect
7
作者 Karima Mokni Mohamed Ch-Chaoui 《International Journal of Biomathematics》 SCIE 2023年第7期165-196,共32页
In this paper,we have derived a discrete evolutionary Beverton-Holt population model.The model is built using evolutionary game theory methodology and takes into consideration the strong Allee effect related to predat... In this paper,we have derived a discrete evolutionary Beverton-Holt population model.The model is built using evolutionary game theory methodology and takes into consideration the strong Allee effect related to predation saturation.We have discussed the existence of the positive fixed point and examined its asymptotic stability.Analytically,we demonstrated that the derived model exhibits Neimark-Sacker bifurcation when the maximal predator intensity is at lower values.All chaotic behaviors are justified numerically.Finally,to avoid these chaotic features and achieve asymptotic stability,we implement two chaos control methods. 展开更多
关键词 Evolutionary game theory asymptotic stability neimark-Sacker bifurcation chaos control
原文传递
Complex dynamics of COVID-19 mathematical model on Erdos-Rényi network
8
作者 Neriman Kartal Senol Kartal 《International Journal of Biomathematics》 SCIE 2023年第5期193-215,共23页
In this study,a conformable fractional order Lotka-Volterra predator-prey model that describes the COVID-19 dynamics is considered.By using a piecewise constant approximation,a discretization method,which transforms t... In this study,a conformable fractional order Lotka-Volterra predator-prey model that describes the COVID-19 dynamics is considered.By using a piecewise constant approximation,a discretization method,which transforms the conformable fractional-order differential equation into a difference equation,is introduced.Algebraic conditions for ensuring the stability of the equilibrium points of the discrete system are determined by using Schur-Cohn criterion.Bifurcation analysis shows that the discrete system exhibits Neimark-Sacker bifurcation around the positive equilibrium point with respect to changing the parameter d and e.Maximum Lyapunov exponents show the complex dynamics of the discrete model.In addition,the COVID-19 mathematical model consisting of healthy and infected populations is also studied on the Erdos Rényi network.If the coupling strength reaches the critical value,then transition from nonchaotic to chaotic state is observed in complex dynamical networks.Finally,it has been observed that the dynamical network tends to exhibit chaotic behavior earlier when the number of nodes and edges increases.All these theoretical results are interpreted biologically and supported by numerical simulations. 展开更多
关键词 Piecewise constant arguments difference equation STABILITY neimark-Sacker bifurcation complex network
原文传递
有保护区的海洋渔业资源离散动力学模型分析 被引量:2
9
作者 顾恩国 李远平 《应用数学》 CSCD 北大核心 2012年第3期685-690,共6页
假设海洋渔业资源分属于保护区和非保护区两个区域,本文建立一个渔业资源储量-捕捞力度模型,用聚合方法得到一个简化的离散动力系统,从而分析正不动点的存在性、稳定性以及关于保护区面积比例的局部分叉,运用中心流形定理分析平衡点的... 假设海洋渔业资源分属于保护区和非保护区两个区域,本文建立一个渔业资源储量-捕捞力度模型,用聚合方法得到一个简化的离散动力系统,从而分析正不动点的存在性、稳定性以及关于保护区面积比例的局部分叉,运用中心流形定理分析平衡点的局部稳定性,并用数值模拟验证不动点的局部分叉.最后,用全局分析方法分析保护区面积比例变化对可行吸引域的结构和大小的影响,从而揭示保护区对渔业资源可持续利用的影响. 展开更多
关键词 渔业资源储量-捕捞力度模型 聚合方法 中心流形定理 正平衡点的稳定性 neimark分叉 可行吸引域
下载PDF
Complex dynamic behaviors of a discrete predator-prey model with stage structure and harvesting 被引量:2
10
作者 Boshan Chen 3iejie Chen 《International Journal of Biomathematics》 2017年第1期233-257,共25页
First, a discrete stage-structured and harvested predator-prey model is established, which is based on a predator-prey model with Type III functional response. Then the~ oretical methods are used to investigate existe... First, a discrete stage-structured and harvested predator-prey model is established, which is based on a predator-prey model with Type III functional response. Then the~ oretical methods are used to investigate existence of equilibria and their local proper- ties. Third, it is shown that the system undergoes flip bifurcation and Neimark-Sacker bifurcation in the interior of R~_, by using the normal form of discrete systems, the center manifold theorem and the bifurcation theory, as varying the model parameters in some range. In particular, the direction and the stability of the flip bifurcation and the Neimark -Sacker bifurcation are showed. Finally, numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the com- plex dynamical behaviors, such as cascades of period-doubling bifurcation and chaotic sets. These results reveal far richer dynamics of the discrete model compared with the continuous model. The Lyapunov exponents are numerically computed to confirm fur- ther the complexity of the dynamical behaviors. In addition, we show also the stabilizing effect of the harvesting by using numerical simulations. 展开更多
关键词 Stability flip bifurcation neimark-Sacker bifurcation CHAOS discrete dyna-mical system predator-prey model harvesting.
原文传递
产生有毒物质的浮游植物—浮游动物离散动力学模型分析
11
作者 顾恩国 张梅娜 陈博 《中南民族大学学报(自然科学版)》 CAS 2013年第2期117-122,共6页
从浮游植物与浮游动物的连续动力学模型出发,建立了一个浮游生物的离散动力系统,然后研究了正不动点的存在性、局部稳定性以及关于环境对有毒浮游植物的最大承载能力的局部分叉,并且运用中心流行定理分析了在flip分叉值处不动点的局部... 从浮游植物与浮游动物的连续动力学模型出发,建立了一个浮游生物的离散动力系统,然后研究了正不动点的存在性、局部稳定性以及关于环境对有毒浮游植物的最大承载能力的局部分叉,并且运用中心流行定理分析了在flip分叉值处不动点的局部稳定性,最后用数值模拟方法验证了不动点的局部分叉,描述了捕捞力度对浮游生物资源的可持续利用的影响. 展开更多
关键词 正不动点 稳定性 倍周期分叉 neimark分叉
下载PDF
外部环境干扰下的非线性渔业资源种群动力模型及分析
12
作者 顾恩国 范致鉴 +1 位作者 梁艳 廖容云 《中南民族大学学报(自然科学版)》 CAS 2011年第3期98-102,126,共6页
运用欧拉方法获得离散的捕食者-食饵差分系统方程,并考虑添加一对捕食者的扰动项后建立了一外部环境干扰下的非线性渔业资源种群模型,从而定量分析正不动点的存在性、稳定性和局部分叉,发现系统可能产生Neimark分叉和倍周期分叉,用全局... 运用欧拉方法获得离散的捕食者-食饵差分系统方程,并考虑添加一对捕食者的扰动项后建立了一外部环境干扰下的非线性渔业资源种群模型,从而定量分析正不动点的存在性、稳定性和局部分叉,发现系统可能产生Neimark分叉和倍周期分叉,用全局分析方法描述了资源在什么范围具有可持续性利用,即保持渔业资源种群数量不枯竭的资源储量范围. 展开更多
关键词 捕食者-食饵模型 欧拉方法 正平衡点的稳定性 倍周期分叉 neimark分叉 可行域
下载PDF
Simplest Normal Forms of Generalized Neimark-Sacker Bifurcation 被引量:1
13
作者 丁玉梅 张琪昌 《Transactions of Tianjin University》 EI CAS 2009年第4期260-265,共6页
The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation ar... The normal forms of generalized Neimark-Sacker bifurcation are extensively studied using normal form theory of dynamic system. It is well known that if the normal forms of the generalized Neimark-Sacker bifurcation are expressed in polar coordinates, then all odd order terms must, in general, remain in the normal forms. In this paper, five theorems are presented to show that the conventional Neimark-Sacker bifurcation can be further simplified. The simplest normal forms of generalized Neimark-Sacker bifurcation are calculated. Based on the conventional normal form, using appropriate nonlinear transformations, it is found that the generalized Neimark-Sacker bifurcation has at most two nonlinear terms remaining in the amplitude equations of the simplest normal forms up to any order. There are two kinds of simplest normal forms. Their algebraic expression formulas of the simplest normal forms in terms of the coefficients of the generalized Neimark-Sacker bifurcation systems are given. 展开更多
关键词 generalized neimark-Sacker bifurcation simplest normal form near identity nonlinear transformations
下载PDF
A study of stability and bifurcation analysis in discrete-time predator—prey system involving the Allee effect 被引量:2
14
作者 Seval Isik 《International Journal of Biomathematics》 SCIE 2019年第1期255-269,共15页
This paper deals with a discrete-time predator-prey system which is subject to an Allee effect on prey.We investigate the existence and uniqueness and find parametric conditions for local asymptotic stability of fixed... This paper deals with a discrete-time predator-prey system which is subject to an Allee effect on prey.We investigate the existence and uniqueness and find parametric conditions for local asymptotic stability of fixed points of the discrete dynamic system.Moreover,using bifurcation theory,it is shown that the system undergoes Neimark-Sacker bifurcation in a small neighborhood of the unique positive fixed point and an inv aria nt circle will appear.Then the direction of bifurcation is given.Furthermore,numerical analysis is provided to illustrate the theoretical discussions with the help of Matlab packages.Thus,the main theoretical results are supported with numerical simulations. 展开更多
关键词 PREDATOR-PREY SYSTEM fixed point stability neimark-Sacker bifurcation Allee effect
原文传递
Dynamics of a discrete predator-prey model with Holling-II functional response 被引量:1
15
作者 Yuqing Liu Xianyi Li 《International Journal of Biomathematics》 SCIE 2021年第8期253-272,共20页
In this paper,we use a semidiscretization method to derive a discrete predator–prey model with Holling type II,whose continuous version is stated in[F.Wu and Y.J.Jiao,Stability and Hopf bifurcation of a predator-prey... In this paper,we use a semidiscretization method to derive a discrete predator–prey model with Holling type II,whose continuous version is stated in[F.Wu and Y.J.Jiao,Stability and Hopf bifurcation of a predator-prey model,Bound.Value Probl.129(2019)1–11].First,the existence and local stability of fixed points of the system are investigated by employing a key lemma.Then we obtain the sufficient conditions for the occurrence of the transcritical bifurcation and Neimark–Sacker bifurcation and the stability of the closed orbits bifurcated by using the Center Manifold theorem and bifurcation theory.Finally,we present numerical simulations to verify corresponding theoretical results and reveal some new dynamics. 展开更多
关键词 Discrete predator-prey system semidiscretization method transcritical bifurcation neimark-Sacker bifurcation
原文传递
Dynamics and bifurcations of a host-parasite model 被引量:1
16
作者 Ali Atabaigi Mohammad Hossein Akrami 《International Journal of Biomathematics》 2017年第6期301-316,共16页
A two-parameter family of discrete models, consisting of two coupled nonlinear difference equations, describing a host-parasite interaction is considered. In particular, we prove that the model has at most one nontriv... A two-parameter family of discrete models, consisting of two coupled nonlinear difference equations, describing a host-parasite interaction is considered. In particular, we prove that the model has at most one nontrivial interior fixed point which is stable for a certain range of parameter values and also undergoes a Neimark-Sacker bifurcation that produces an attracting invariant curve in some areas of the parameter. 展开更多
关键词 HOST-PARASITE neimark-Sacker bifurcation local dynamics.
原文传递
Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator prey model with harvesting
17
作者 Wei Liu Yaolin Jiang 《International Journal of Biomathematics》 SCIE 2020年第1期1-37,共37页
In this paper,a difference-algebraic predator prey model is proposed,and its complex dynamical behaviors are analyzed.The model is a discrete singular system,which is obtained by using Euler scheme to discretize a dif... In this paper,a difference-algebraic predator prey model is proposed,and its complex dynamical behaviors are analyzed.The model is a discrete singular system,which is obtained by using Euler scheme to discretize a differential-algebraic predator-prey model with harvesting that we establish.Firstly,the local stability of the interior equilibrium point of proposed model is investigated on the basis of discrete dynamical system the­ory.Further,by applying the new normal form of difference-algebraic equations,center manifold theory and bifurcation theory,the Flip bifurcation and Neimark-Sacker bifur­cation around the interior equilibrium point are studied,where the step size is treated as the variable bifurcation parameter.Lastly,with the help of Matlab software,some numerical simulations are performed not only to validate our theoretical results,but also to show the abundant dynamical behaviors,such as period-doubling bifurcations,period 2,4,8,and 16 orbits,invariant closed curve,and chaotic sets.In particular,the corresponding maximum Lyapunov exponents are numerically calculated to corroborate the bifurcation and chaotic behaviors. 展开更多
关键词 Predator prey HARVESTING Flip bifurcation neimark Sacker bifurcation chaos.
原文传递
Cooperative hunting in a discrete predator-prey system
18
作者 Yunshyong Chow Sophia R-J.Jang Hua-Ming Wang 《International Journal of Biomathematics》 SCIE 2020年第7期133-158,共26页
We propose and investigate a discrete-time predator-prey system with cooperative hunting in the predator population.The model is constructed from the classical Nicholson-Bailey host-parasitoid system with density depe... We propose and investigate a discrete-time predator-prey system with cooperative hunting in the predator population.The model is constructed from the classical Nicholson-Bailey host-parasitoid system with density dependent growth rate.A sufficient condition based on the model parameters for which both populations can coexist is derived,namely that the predator’s maximal reproductive number exceeds one.We study existence of interior steady states and their stability in certain parameter regimes.It is shown that the system behaves asymptotically similar to the model with no cooperative hunting if the degree of cooperation is small.Large cooperative hunting,however,may promote persistence of the predator for which the predator would otherwise go extinct if there were no cooperation. 展开更多
关键词 Cooperative hunting discrete predator-prey system predator persistence neimark-Sacker bifurcation
原文传递
三自由度含间隙碰撞振动系统Neimark-Sacker分岔的反控制 被引量:9
19
作者 伍新 文桂林 +1 位作者 徐慧东 何莉萍 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第20期89-96,共8页
分岔反控制作为传统分岔控制的逆问题,其目的是在预先指定的系统参数点通过控制主动设计出具有所期望特性的分岔解.以一类三自由度含间隙双面碰撞振动系统为研究对象,在不改变原系统平衡解结构的前提下,考虑到在碰撞振动系统反控制过程... 分岔反控制作为传统分岔控制的逆问题,其目的是在预先指定的系统参数点通过控制主动设计出具有所期望特性的分岔解.以一类三自由度含间隙双面碰撞振动系统为研究对象,在不改变原系统平衡解结构的前提下,考虑到在碰撞振动系统反控制过程中由Poincaré映射的隐式特点和传统的映射Neimark-Sacker分岔临界准则带来的困难,通过对原系统施加线性反馈控制器并利用不直接依赖于特征值计算的Neimark-Sacker分岔显式临界准则研究了此系统的分岔反控制问题.首先对原系统施加线性反馈控制,建立闭环控制系统的六维Poincaré映射.由于六维映射的雅克比矩阵的特征值没有解析的表达式,利用高维映射Neimark-Sacker分岔的显式临界准则,获得了系统出现拟周期碰撞振动运动的控制参数区域.然后采用中心流形-正则形方法分析了拟周期分岔解的稳定性.数值仿真结果表明本文方法可以在指定的系统参数点通过控制设计出稳定的拟周期碰撞运动. 展开更多
关键词 neimark-SACKER分岔 分岔反控制 稳定性 碰撞振动系统
下载PDF
一类碰撞振动系统的概周期运动及混沌形成过程 被引量:10
20
作者 罗冠炜 褚衍东 苟向锋 《机械强度》 EI CAS CSCD 北大核心 2005年第4期445-451,共7页
基于Poincar啨映射方法和数值仿真,对一类双自由度碰撞振动系统单碰撞周期运动的稳定性与分岔进行分析。着重研究单碰撞周期运动在非共振和弱共振条件下的内依马克沙克分岔、强共振情况下的亚谐分岔、Hopfflip分岔和多碰撞周期运动的内... 基于Poincar啨映射方法和数值仿真,对一类双自由度碰撞振动系统单碰撞周期运动的稳定性与分岔进行分析。着重研究单碰撞周期运动在非共振和弱共振条件下的内依马克沙克分岔、强共振情况下的亚谐分岔、Hopfflip分岔和多碰撞周期运动的内依马克沙克分岔。通过数值仿真分析概周期碰撞运动向混沌运动的演化过程。 展开更多
关键词 碰撞 振动 周期运动 内依马克-沙克分岔 混沌
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部