In this work,the underlying mechanism responsible for the near-linear elastic deformation behavior of a dual-phase Ti-Nb alloy consisting of β and α'' phase with large recoverable strain was systematically e...In this work,the underlying mechanism responsible for the near-linear elastic deformation behavior of a dual-phase Ti-Nb alloy consisting of β and α'' phase with large recoverable strain was systematically elucidated.Based on in situ synchrotron X-ray diffraction(SXRD)analyses,it was found that besides intrinsic elastic deformation,a slight reversible β-α'' stress-induced martensitic(SIM)transformation,which proceeded in a consecutive mode under the retarding effect of micro-defects,took place during the near-linear elastic deformation.After unloading,a small amount of residual macroscopic strain remained in the specimen due to the incomplete reverse α''→β transformation on unloading.The high near-linear elastic deformability of the cold drawing(CD)Ti-Nb alloy has been revealed to be attributed to the coupling actions of intrinsic elasticity as well as the consecutive and reversible β-α'' SIM transformation.Our research may contribute to a new avenue for the design and development of novel dual-phase Ti-based alloys with desirable elastic deformability.展开更多
In this work,a multi-phase Zr-30Ti-7Nb-4Sn alloy with large near-linear elastic deformability was prepared by the solution treatment plus pre-straining(S TP)treatment,and the underlying mechanism accountable for the n...In this work,a multi-phase Zr-30Ti-7Nb-4Sn alloy with large near-linear elastic deformability was prepared by the solution treatment plus pre-straining(S TP)treatment,and the underlying mechanism accountable for the near-linear elastic deformation was systematically clarified.It was found that the Zr-30Ti-7Nb-4Sn alloy was composed ofβ,α″andα′phases,and numerous dislocations were formed in the alloy specimen after STP treatment.With the retarding effect of high-density dislocations,the stress-induced martensitic(SIM)transformation fromβtoα″phases took place homogeneously and continuously during loading,in conjunction with the occurrence of elastic deformation ofβ,α″andα′phases.Under the entire tensile procedure,no observable phase transformation occurred betweenα′martensite andβphase.Consequently,the near-linear elastic deformation capability in STP Zr-30Ti-7Nb-4Sn alloy is mainly ascribed to the coupling actions of consecutiveβ→α″SIM transformation and intrinsic elastic deformation ofβ,α″andα′phases.These experimental results provide a basis for designing and developing novel multi-phase Zr-based alloys that possess large near-linear deformability.展开更多
The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile ...The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile test. It is shown that upon loading, the composite experiences elastic elongation and slight plastic deformation of B19′,B2 and β-Nb phases, together with the forward stress-induced martensitic(SIM) transformation from B2 to B19′. Upon unloading, the deformation mechanisms of the composite mainly involve elastic recovery of B19′, B2 and β-Nb phases,compression deformation of β-Nb phase and incomplete B19′→B2 reverse SIM transformation. In the tensile loading-unloading procedure, besides the inherent elastic deformation and SIM transformation, the(001) compound twins in B19′ martensite can also be conducive to the elastic deformation occurring in B19′-phase of the composite.Therefore, this composite can exhibit a large recoverable strain after unloading owing to the elastic deformation, and the partially reversible and consecutive SIM transformation together with the(001) compound twins.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52175410)the Six Talent Peaks Project in Jiangsu Province(No.2019-XCL-113)+1 种基金Zhenjiang Science&Technology Program(No.GY2020001)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20200101)。
文摘In this work,the underlying mechanism responsible for the near-linear elastic deformation behavior of a dual-phase Ti-Nb alloy consisting of β and α'' phase with large recoverable strain was systematically elucidated.Based on in situ synchrotron X-ray diffraction(SXRD)analyses,it was found that besides intrinsic elastic deformation,a slight reversible β-α'' stress-induced martensitic(SIM)transformation,which proceeded in a consecutive mode under the retarding effect of micro-defects,took place during the near-linear elastic deformation.After unloading,a small amount of residual macroscopic strain remained in the specimen due to the incomplete reverse α''→β transformation on unloading.The high near-linear elastic deformability of the cold drawing(CD)Ti-Nb alloy has been revealed to be attributed to the coupling actions of intrinsic elasticity as well as the consecutive and reversible β-α'' SIM transformation.Our research may contribute to a new avenue for the design and development of novel dual-phase Ti-based alloys with desirable elastic deformability.
基金financially supported by the National Natural Science Foundation of China(No.52175410)the Six Talent Peaks Project in Jiangsu Province(No.2019-XCL-113)+1 种基金Zhenjiang Science&Technology Program(No.GY2020001)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20200101)。
文摘In this work,a multi-phase Zr-30Ti-7Nb-4Sn alloy with large near-linear elastic deformability was prepared by the solution treatment plus pre-straining(S TP)treatment,and the underlying mechanism accountable for the near-linear elastic deformation was systematically clarified.It was found that the Zr-30Ti-7Nb-4Sn alloy was composed ofβ,α″andα′phases,and numerous dislocations were formed in the alloy specimen after STP treatment.With the retarding effect of high-density dislocations,the stress-induced martensitic(SIM)transformation fromβtoα″phases took place homogeneously and continuously during loading,in conjunction with the occurrence of elastic deformation ofβ,α″andα′phases.Under the entire tensile procedure,no observable phase transformation occurred betweenα′martensite andβphase.Consequently,the near-linear elastic deformation capability in STP Zr-30Ti-7Nb-4Sn alloy is mainly ascribed to the coupling actions of consecutiveβ→α″SIM transformation and intrinsic elastic deformation ofβ,α″andα′phases.These experimental results provide a basis for designing and developing novel multi-phase Zr-based alloys that possess large near-linear deformability.
基金the National Natural Science Foundation of China (Nos.51771082,51971009,52175410,51801076)the Six Talent Peaks Project in Jiangsu Province,China (No.2019-XCL-113)+2 种基金Zhenjiang Science & Technology Program,China (No.GY2020001)Project of Faculty of Agricultural Equipment of Jiangsu University,China (No.NZXB20200101)the US Department of Energy,Office of Science and Office of Basic Energy Science (No.DE-AC02-06CH11357) for providing the Advanced Photon Source。
文摘The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile test. It is shown that upon loading, the composite experiences elastic elongation and slight plastic deformation of B19′,B2 and β-Nb phases, together with the forward stress-induced martensitic(SIM) transformation from B2 to B19′. Upon unloading, the deformation mechanisms of the composite mainly involve elastic recovery of B19′, B2 and β-Nb phases,compression deformation of β-Nb phase and incomplete B19′→B2 reverse SIM transformation. In the tensile loading-unloading procedure, besides the inherent elastic deformation and SIM transformation, the(001) compound twins in B19′ martensite can also be conducive to the elastic deformation occurring in B19′-phase of the composite.Therefore, this composite can exhibit a large recoverable strain after unloading owing to the elastic deformation, and the partially reversible and consecutive SIM transformation together with the(001) compound twins.