Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was ...Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.展开更多
The dependence of the magnetic properties on the particle size of recycled HDDR Nd-Fe-B powders was investigated,with the aim to assess the reprocessing potential of the end-of-life scrap magnets via spark plasma sint...The dependence of the magnetic properties on the particle size of recycled HDDR Nd-Fe-B powders was investigated,with the aim to assess the reprocessing potential of the end-of-life scrap magnets via spark plasma sintering(SPS).The as received recycled HDDR powder has coercivity(Hci)=830 kA/m and particles in the range from 30 to 700 μm(average 220 μm).After burr milling,the average particle size is reduced to 120 μm and subsequently the Hci of fine(milled) powder was 595 kA/m.Spark plasma sintering was exploited to consolidate the nanograined HDDR powders and limit the abnormal grain coarsening.The optimal SPS-ing of coarse HDDR powder at 750℃for 1 min produces fully dense magnets with Hci=950±100 kA/m which further increases to 1200 kA/m via thermal treatment at 750℃for 15 min.The burr milled fine HDDR powder under similar SPS conditions and after thermal treatment results in Hci=940 kA/m.The fine powder is further sieved down from 630 to less than 50 μm mesh size,to evaluate the possible reduction in Hci in relation to the particle size.The gain in oxygen content doubles for <50 μm sized particles as compared with coarser fractions(>200 μm).The XRD analysis for fractionated powder indicates an increase in Nd2O3 phase peaks in the finer(<100 μm)fractions.Similarly,the Hci reduces from 820 kA/m in the coarse particles(>200 μm) to 460 kA/m in the fine sized particles(<100μm).SPS was done on each HDDR powder fraction under the optimal conditions to measure the variation in Hci and density.The Hci of SPS-ed coarse fraction(>200 μm) is higher than 930 kA/m and it falls abruptly to just 70 kA/m for the fine sized particles(<100 μm).The thermal treatment further improves the Hci to>1000 kA/m only up to 100 μm sized fractions with>90% sintered density.The full densification(>99%) is observed only in the coarse fractions.The loss of coercivity and lack of sinterability in the fine sized particles(<100 μm) are attributed to a very high oxygen content.This implies that during recycling,if good magnetic p展开更多
从材料保护的角度出发,在分析了Nd Fe B永磁材料的氢脆过程及氢脆的特点后,用RF磁控溅射制备一定厚度的Al薄膜并在一定条件下进行氧化处理,得到了Al+Al2O3复合涂层。用SEM和XRD分析了涂层形貌和组成,并用高压气相充氢的方式测试了涂层...从材料保护的角度出发,在分析了Nd Fe B永磁材料的氢脆过程及氢脆的特点后,用RF磁控溅射制备一定厚度的Al薄膜并在一定条件下进行氧化处理,得到了Al+Al2O3复合涂层。用SEM和XRD分析了涂层形貌和组成,并用高压气相充氢的方式测试了涂层的阻氢性能。研究表明,厚度为8.0μm复合涂层的阻氢性能为:在10MPa的H2环境中(25℃),阻氢时间达65min,且对磁体的磁性能无不良影响。展开更多
基金Supported by China-Australia Government Special Found for Science and Technology Cooperation(CH060072)International Cooperation Program of the Science&Technology Committee of Shanghai Municipality(075207036)Program for Changjiang Scholars and Innovative Research Team in University(IRT0739)
基金This work was financially supported by the National Natural Science Foundation of China (No.50571028) and Beijng Key Task of China (D0406002000091).
文摘Magnetic microstructure of high performance Nd-Fe-B magnets was investigated by using magnetic force microscopy. The correlation between magnetic microstructure and coercivity for high performance Nd-Fe-B magnets was studied. It is found that the magnets with different coercivity mechanism take on different microstructures and magnetism. Moreover, the magnetic microstructures of high performance permanent magnets can be explained by the starting field theory model.
基金Project supported by European Community’s Horizon 2020Program [H2020/2014-2019] under grant Agreement No.674973(MSCA-ETN DEMETER)
文摘The dependence of the magnetic properties on the particle size of recycled HDDR Nd-Fe-B powders was investigated,with the aim to assess the reprocessing potential of the end-of-life scrap magnets via spark plasma sintering(SPS).The as received recycled HDDR powder has coercivity(Hci)=830 kA/m and particles in the range from 30 to 700 μm(average 220 μm).After burr milling,the average particle size is reduced to 120 μm and subsequently the Hci of fine(milled) powder was 595 kA/m.Spark plasma sintering was exploited to consolidate the nanograined HDDR powders and limit the abnormal grain coarsening.The optimal SPS-ing of coarse HDDR powder at 750℃for 1 min produces fully dense magnets with Hci=950±100 kA/m which further increases to 1200 kA/m via thermal treatment at 750℃for 15 min.The burr milled fine HDDR powder under similar SPS conditions and after thermal treatment results in Hci=940 kA/m.The fine powder is further sieved down from 630 to less than 50 μm mesh size,to evaluate the possible reduction in Hci in relation to the particle size.The gain in oxygen content doubles for <50 μm sized particles as compared with coarser fractions(>200 μm).The XRD analysis for fractionated powder indicates an increase in Nd2O3 phase peaks in the finer(<100 μm)fractions.Similarly,the Hci reduces from 820 kA/m in the coarse particles(>200 μm) to 460 kA/m in the fine sized particles(<100μm).SPS was done on each HDDR powder fraction under the optimal conditions to measure the variation in Hci and density.The Hci of SPS-ed coarse fraction(>200 μm) is higher than 930 kA/m and it falls abruptly to just 70 kA/m for the fine sized particles(<100 μm).The thermal treatment further improves the Hci to>1000 kA/m only up to 100 μm sized fractions with>90% sintered density.The full densification(>99%) is observed only in the coarse fractions.The loss of coercivity and lack of sinterability in the fine sized particles(<100 μm) are attributed to a very high oxygen content.This implies that during recycling,if good magnetic p
文摘从材料保护的角度出发,在分析了Nd Fe B永磁材料的氢脆过程及氢脆的特点后,用RF磁控溅射制备一定厚度的Al薄膜并在一定条件下进行氧化处理,得到了Al+Al2O3复合涂层。用SEM和XRD分析了涂层形貌和组成,并用高压气相充氢的方式测试了涂层的阻氢性能。研究表明,厚度为8.0μm复合涂层的阻氢性能为:在10MPa的H2环境中(25℃),阻氢时间达65min,且对磁体的磁性能无不良影响。
基金Shandong Provincial Natural Science Foundation,China(ZR2019BEM014)Doctoral Scientific Research Foundation of Shandong Management University(SDMUD201719)。