This study focuses on the geology,geochemistry,Sr-Nd isotopes and their tectonic settings of three types of basalts in Diyanmiao ophiolite in the Xar Moron area located on the eastern margin of the Central Asian Oroge...This study focuses on the geology,geochemistry,Sr-Nd isotopes and their tectonic settings of three types of basalts in Diyanmiao ophiolite in the Xar Moron area located on the eastern margin of the Central Asian Orogenic Belt.Type I basalts are oceanic tholeiites with a depleted light rare earth element(LREE)pattern,which are similar to the typical N-mid-oceanic ridge basalt(MORB)and suggests that they were formed at a mid-oceanic ridge.The initial 87Sr/86Sr ratios of Type I basalts range from 0.703966 to 0.705276 and theεNd(t)values are from 16.49 to 17.15,indicating that they were derived from a depleted mantle source.Type II basalts belong to the medium-potassium calc-akaline series and have the geochem-ical characteristics of Nb-enriched basalt(NEB)with high Nb content(14.5 ppm)and strong enrichment in LREEs,implying that they were created by the partial melting of mantle wedge peridotite that previously metasomatized by slab melts.Type III basalts are high-Al basalt(HAB)with high-Al contents(Al_(2)0_(3)=16.75 wt.%-18.00 wt.%),distinct Nb depletion and high Th/Yb ratios.Thus they were likely gen-erated in a normal island-arc setting.Therefore,the association of MORB,NEB,and HAB in the study area may be due to the subduction of a mid-oceanic ridge,and the Diyanmiao ophiolite is proposed to be formed in the forearc setting of a mid-oceanic ridge subduction system.展开更多
Three fragments of the Archean oceanic crust have been found between the Archean granulite belt and the Paleo-Proterozoic Hongqiyingzi group in North China craton, which spread along the Shangyi-Chicheng ancient fault...Three fragments of the Archean oceanic crust have been found between the Archean granulite belt and the Paleo-Proterozoic Hongqiyingzi group in North China craton, which spread along the Shangyi-Chicheng ancient fault. This paper presents integrated field, petrology, geochemistry and geochronology evidence of the ancient oceanic fragments. The magma crystallizing age of the tonalite in the Shangyi complex is 2512±19 Ma and the geochemical characteristics suggest that the Nbenriched basalts may be related to crustal contamination and formed in the intra-oceanic arc of the supra subduction zone setting.展开更多
Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji M...Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.展开更多
Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus ...Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus on the Early Mesozoic mafic rocks and granite porphyry,which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean.The granite porphyry samples are calc-alkaline and distinguished by high Sr contents,strong depletion of heavy rare earth elements,resulting in high(La/Yb);and Sr/Y ratios,and negligible Eu anomalies.Based on their high Na_(2)O and Mg O,low K_(2)O contents,positiveε_(Hf)(t)andε_(Nd)(t)and low(^(87)Sr/^(86)Sr)ivalues,we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust.The Nb-enriched mafic rocks are enriched in Rb,Th,U,Pb and K,and depleted in Nb,Ta,Ba,P and Ti,corroborating a subduction-related origin.Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts.Trace element and isotope modeling results and elevated zirconδ^(18)O values suggest variable subducting sediments input into the mantle wedge,dominated by terrigenous sediments.Synthesizing the widely-developed bimodal rock associations,conjugated dikes,thermal metamorphism,tectonic characteristics,paleomagnetic constraints,and paleogeographical evidence along the Solonke-Changchun suture zone,we identify a slab window triggered by slab break-off,which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.展开更多
The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean an...The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the nor展开更多
Recent geological survey has identified the Early Paleoproterozoic meta-mafic intrusions in the southwestern Yangtze Block.We present geochronological,whole-rock geochemical and Nd isotopic data for these meta-mafic r...Recent geological survey has identified the Early Paleoproterozoic meta-mafic intrusions in the southwestern Yangtze Block.We present geochronological,whole-rock geochemical and Nd isotopic data for these meta-mafic rocks to better address the tectonic evolution of the Yangtze Block during the Early Paleoproterozoic Period.Geochronological data show that the meta-mafic rocks have zircon ages of 2 395-2 316 Ma.They have high TiO_2 contents of 1.40 wt.%-3.66 wt.% and Nb concentrations of 13.7 ppm-45.5 ppm,thus aregrouped as Nb-enriched mafic rocks.These mafic rocks are characterized by tholeiitic compositions with enrichment of LREEs and LILEs,and can be divided into two groups.Group 1 samples display E-MORB-like geochemical characteristics.Group 2 samples have positive ENd(t) values of 4.0-5.0.Geochemical data indicate that all meta-mafic rocks were likely derived from a depleted asthenospheric mantle.REE modeling indicates lower degree of partial melting for Group 2 samples(3%-10%) relative to Group 1 samples(15%-20%).Taking into account contemporaneous post-collisional granitoids in southwestern Yangtze Block,we propose that these meta-mafic rocks were formed in a post-collisional extension setting.These meta-mafic rocks can be compared with those in Africa,South America and Europe,and might be linked with the Arrowsmith orogenic belt.展开更多
The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au minerali...The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au mineralization remains controversial.Here we report new whole-rock major and trace element,and Sr-Nd-Hf-Pb isotopic data for the newly discovered basalt in the Nadun area,Duolong mineral district,to decipher their genesis and further constrain the tectonic environment.A contemporaneous rhyolite sample interbedded with the basalt in the lower part of the volcanic section in the Nadun area yields an LA-ICP-MS zircon U–Pb age of 122.5±1.2 Ma.The basalt samples exhibit high-K calc-alkaline/shoshonite properties and are enriched in high field strength elements,e.g.,high Ti O_(2)(1.43–1.79 wt.%)and Nb(14.6–19.5 ppm)contents,with high Nb/La ratios(0.4–0.6),which are compositionally comparable to those of Nb-enriched arc basalts(NEABs).The(^(87) Sr/^(86) Sr)iratios of 0.7052 to 0.7056,negative eNd(t)(-0.7 to-0.2)and eHf(t)values(+6.0 to+6.5),and high(^(206) Pb/^(204)Pb)i,(^(207) Pb/^(204)Pb)i,(^(208) Pb/^(204)Pb)iand ratios(18.522 to 18.561,15.641 to 15.645 and 38.679 to 38.730,respectively)suggest that the Nadun NEABs are more enriched than those of the island arc basalts(IABs)in the area.The slightly enriched radiogenic isotopes for the Nadun NEABs indicate that the subducting sediments play an important role in the source.Furthermore,their high Nb,Ti,and Cu contents indicate that the source mantle wedge was metasomatized by slab melts.The Nadun NEAB and other coeval magmatic rocks in the Duolong mineral district,including adakite,OIB-like basalt,MORB-type basalt,A-type rhyolite,and common IAB,are typical rock assemblages of ridge subduction.We infer that the Duolong mineral district were formed by ridge subduction in the Early Cretaceous.展开更多
Adakites and Nb-enriched arc basaltic rocks (NEABs) are identified to occur within the Carboniferous arc volcanic sequence in the Alataw Mountains, Xinjiang. The adakites, which consist of calc-alkaline dacites and rh...Adakites and Nb-enriched arc basaltic rocks (NEABs) are identified to occur within the Carboniferous arc volcanic sequence in the Alataw Mountains, Xinjiang. The adakites, which consist of calc-alkaline dacites and rhyolites, are characterized by strong depletion of heavy rare earth elements (HREEs) (e.g., Yb) and Y, high Sr contents and Sr/Y ratios, either with no Eu anomalies or obvious positive Eu anomalies, apparent positive Sr anomalies, and depleted Nb and Ti. The Alataw adakites are very geochemically similar to the adakites that were presumably derived from partial melting of subducting oceanic crust. The rhyolitic adakite in the Alataw Mountains shows low MgO contents of 0.35% and Mg# values of about 17. However, the dacitic adakite shows high MgO contents of 2.67% to 3.32% and Mg# values of 53 to 58, suggesting that the adakite was possibly contaminated by mantle peridotite. On the other hand, the NEABs are characterized by Na-rich (Na2O/K2O > 2.0), high P2O5 and TiO2 contents, positive to weakly negative Nb anomalies, and non-negative Ti anomalies, suggesting that the NEABs were probably derived from partial melting of mantle peridotite that interacted with slab melt under high geothermal gradient. The Alataw adakites were probably derived from partial melting of oceanic crust on the southern margin of the Junggar plate that was subducted beneath the Bole block in the Carboniferous. The Alataw adakites-NE- ABs association implies that the partial melting of the subducting oceanic crust and the succedent interactions between the slab melt and peridotite in the mantle wedge possibly took place under the Bole arc in Carboniferous. On the southern margin of the Junggar plate, the Carboniferous subduction of oceanic crust (basin) was possibly extensive in the late Paleozoic era. In the Alataw area, high geothermal gradient possibly occurred in Carboniferous, and partial melting of subducting oceanic crust was a probable mechanism of Carboniferous regional crust growth.展开更多
基金This study was financially supported by Inner Mongolia Autonomous Region Geological and Mineral Exploration Fund(Nos.2017-YS01 and 2020-YS01)the Project of the Institute of Mineral Resources,China Metallurgical Geology Bureau(No.CMGB202002).
文摘This study focuses on the geology,geochemistry,Sr-Nd isotopes and their tectonic settings of three types of basalts in Diyanmiao ophiolite in the Xar Moron area located on the eastern margin of the Central Asian Orogenic Belt.Type I basalts are oceanic tholeiites with a depleted light rare earth element(LREE)pattern,which are similar to the typical N-mid-oceanic ridge basalt(MORB)and suggests that they were formed at a mid-oceanic ridge.The initial 87Sr/86Sr ratios of Type I basalts range from 0.703966 to 0.705276 and theεNd(t)values are from 16.49 to 17.15,indicating that they were derived from a depleted mantle source.Type II basalts belong to the medium-potassium calc-akaline series and have the geochem-ical characteristics of Nb-enriched basalt(NEB)with high Nb content(14.5 ppm)and strong enrichment in LREEs,implying that they were created by the partial melting of mantle wedge peridotite that previously metasomatized by slab melts.Type III basalts are high-Al basalt(HAB)with high-Al contents(Al_(2)0_(3)=16.75 wt.%-18.00 wt.%),distinct Nb depletion and high Th/Yb ratios.Thus they were likely gen-erated in a normal island-arc setting.Therefore,the association of MORB,NEB,and HAB in the study area may be due to the subduction of a mid-oceanic ridge,and the Diyanmiao ophiolite is proposed to be formed in the forearc setting of a mid-oceanic ridge subduction system.
基金supported by the State Key Laboratory ofGeological Processes and Mineral Resources,China(No.GPMR0741)Research Fund for the Doctoral Program ofHigher Education of China(20070491516)NSFC(No.40472096 and 90814006),which is dedicated to the 100anniversary of geological department,Peking university
文摘Three fragments of the Archean oceanic crust have been found between the Archean granulite belt and the Paleo-Proterozoic Hongqiyingzi group in North China craton, which spread along the Shangyi-Chicheng ancient fault. This paper presents integrated field, petrology, geochemistry and geochronology evidence of the ancient oceanic fragments. The magma crystallizing age of the tonalite in the Shangyi complex is 2512±19 Ma and the geochemical characteristics suggest that the Nbenriched basalts may be related to crustal contamination and formed in the intra-oceanic arc of the supra subduction zone setting.
基金supported by the National Science Foundation of ChinaNSFC grants(Grant Nos.41602056,41372075,41172069)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M590729)the Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(Grant No.CUG160846)
文摘Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.
基金financially supported by the National Natural Science Foundation of China(Grant 41872056)Graduate Innovation Fund of Jilin University(Grant No.101832020CX196)。
文摘Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated.Here we focus on the Early Mesozoic mafic rocks and granite porphyry,which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean.The granite porphyry samples are calc-alkaline and distinguished by high Sr contents,strong depletion of heavy rare earth elements,resulting in high(La/Yb);and Sr/Y ratios,and negligible Eu anomalies.Based on their high Na_(2)O and Mg O,low K_(2)O contents,positiveε_(Hf)(t)andε_(Nd)(t)and low(^(87)Sr/^(86)Sr)ivalues,we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust.The Nb-enriched mafic rocks are enriched in Rb,Th,U,Pb and K,and depleted in Nb,Ta,Ba,P and Ti,corroborating a subduction-related origin.Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts.Trace element and isotope modeling results and elevated zirconδ^(18)O values suggest variable subducting sediments input into the mantle wedge,dominated by terrigenous sediments.Synthesizing the widely-developed bimodal rock associations,conjugated dikes,thermal metamorphism,tectonic characteristics,paleomagnetic constraints,and paleogeographical evidence along the Solonke-Changchun suture zone,we identify a slab window triggered by slab break-off,which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.
基金supported by National Natural Science Foundation of China(41802236)“the Fundamental Research Funds for the Central universities”(N170103013,N2001004 and N170104022)Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources(DBY-KF-18-05)。
文摘The early Paleozoic tectonic evolution of the Xing'an-Mongolian Orogenic Belt is dominated by two oceanic basins on the northwestern and southeastern sides of the Xing'an Block,i.e.,the Xinlin-Xiguitu Ocean and the Nenjiang Ocean.However,the early development of the Nenjiang Ocean remains unclear.Here,we present zircon U-Pb geochronology and whole-rock elemental and Sr-Nd isotopic data on the gabbros in the Xinglong area together with andesitic tuffs and basalts in the Duobaoshan area.LA-ICP-MS zircon U-Pb dating of gabbros and andesitic tuffs yielded crystallization ages of 443-436 Ma and 452-451 Ma,respectively.The Early Silurian Xinglong gabbros show calc-alkaline and E-MORB affinities but they are enriched in LILEs,and depleted in HFSEs,with relatively low U/Th ratios of 0.18-0.36 andεNd(t)values of-1.6 to+0.5.These geochemical features suggest that the gabbros might originate from a mantle wedge modified by pelagic sediment-derived melts,consistent with a back-arc basin setting.By contrast,the andesitic tuffs are characterized by high MgO(>5 wt.%),Cr(138-200 ppm),and Ni(65-110 ppm)contents,and can be termed as high-Mg andesites.Their low Sr/Y ratios of 15.98-17.15 and U/Th values of 0.24-0.25 and moderate(La/Sm)_n values of 3.07-3.26 are similar to those from the Setouchi Volcanic Belt(SW Japan),and are thought to be derived from partial melting of subducted sediments,and subsequent melt-mantle interaction.The Duobaoshan basalts have high Nb(8.44-10.30 ppm)and TiO2 contents(1.17-1.60 wt.%),typical of Nb-enriched basalts.They are slightly younger than regional adakitic rocks and have positiveεNd(t)values of+5.2 to+5.7 and are interpreted to be generated by partial melting of a depleted mantle source metasomatized by earlier adakitic melts.Synthesized with coeval arc-related igneous rocks from the southeastern Xing'an Block,we propose that the Duobaoshan high-Mg andesitic tuffs and Nbenriched basalts are parts of the Late Ordovician and Silurian Sonid Zuoqi-Duobaoshan arc belt,and they were formed by the nor
基金jointly supported by the National Natural Science Foundation of China(Nos.U1701641,41702230)the District Summary and Service Product Develop of Yunnan Region Geologic Survey(No.121201102000150012-02)+1 种基金Yunnan Province Geological Survey Foundation(No.2013HA001)Natural Science Foundation of Guangdong Province(No.2018B030312007)
文摘Recent geological survey has identified the Early Paleoproterozoic meta-mafic intrusions in the southwestern Yangtze Block.We present geochronological,whole-rock geochemical and Nd isotopic data for these meta-mafic rocks to better address the tectonic evolution of the Yangtze Block during the Early Paleoproterozoic Period.Geochronological data show that the meta-mafic rocks have zircon ages of 2 395-2 316 Ma.They have high TiO_2 contents of 1.40 wt.%-3.66 wt.% and Nb concentrations of 13.7 ppm-45.5 ppm,thus aregrouped as Nb-enriched mafic rocks.These mafic rocks are characterized by tholeiitic compositions with enrichment of LREEs and LILEs,and can be divided into two groups.Group 1 samples display E-MORB-like geochemical characteristics.Group 2 samples have positive ENd(t) values of 4.0-5.0.Geochemical data indicate that all meta-mafic rocks were likely derived from a depleted asthenospheric mantle.REE modeling indicates lower degree of partial melting for Group 2 samples(3%-10%) relative to Group 1 samples(15%-20%).Taking into account contemporaneous post-collisional granitoids in southwestern Yangtze Block,we propose that these meta-mafic rocks were formed in a post-collisional extension setting.These meta-mafic rocks can be compared with those in Africa,South America and Europe,and might be linked with the Arrowsmith orogenic belt.
基金supported by the National Natural Science Foundation of China(Grant Nos.42002235,41803002)the National Key R&D Program of China(2016YFC0600408)+3 种基金the China Postdoctoral Science Foundation(Grant Nos.2019M652495,2018M642708)the Taishan Scholar Program of Shandong(ts201712075)the Ao Shan Talents Cultivation Program Supported by Qingdao National Laboratory for Marine Science and Technology(2017ASTCP-OS07)the Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.JCZX202026)。
文摘The Duolong mineral district in western Tibet is one of the largest porphyry Cu–Au deposit fields with significant metallogenic potential in China.Its tectonic environment relevant to Early Cretaceous Cu–Au mineralization remains controversial.Here we report new whole-rock major and trace element,and Sr-Nd-Hf-Pb isotopic data for the newly discovered basalt in the Nadun area,Duolong mineral district,to decipher their genesis and further constrain the tectonic environment.A contemporaneous rhyolite sample interbedded with the basalt in the lower part of the volcanic section in the Nadun area yields an LA-ICP-MS zircon U–Pb age of 122.5±1.2 Ma.The basalt samples exhibit high-K calc-alkaline/shoshonite properties and are enriched in high field strength elements,e.g.,high Ti O_(2)(1.43–1.79 wt.%)and Nb(14.6–19.5 ppm)contents,with high Nb/La ratios(0.4–0.6),which are compositionally comparable to those of Nb-enriched arc basalts(NEABs).The(^(87) Sr/^(86) Sr)iratios of 0.7052 to 0.7056,negative eNd(t)(-0.7 to-0.2)and eHf(t)values(+6.0 to+6.5),and high(^(206) Pb/^(204)Pb)i,(^(207) Pb/^(204)Pb)i,(^(208) Pb/^(204)Pb)iand ratios(18.522 to 18.561,15.641 to 15.645 and 38.679 to 38.730,respectively)suggest that the Nadun NEABs are more enriched than those of the island arc basalts(IABs)in the area.The slightly enriched radiogenic isotopes for the Nadun NEABs indicate that the subducting sediments play an important role in the source.Furthermore,their high Nb,Ti,and Cu contents indicate that the source mantle wedge was metasomatized by slab melts.The Nadun NEAB and other coeval magmatic rocks in the Duolong mineral district,including adakite,OIB-like basalt,MORB-type basalt,A-type rhyolite,and common IAB,are typical rock assemblages of ridge subduction.We infer that the Duolong mineral district were formed by ridge subduction in the Early Cretaceous.
基金This work was supported by the Major State Basic Research Program of China(Grant No.2001CB409803)the National Natural Science Foundation of China(Grant Nos.40273019 and 40172028)+1 种基金the National"305"Program(Grant No.96-915-03-02)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant Nos.KZCX2-102 and KZCX2-SW-117).
文摘Adakites and Nb-enriched arc basaltic rocks (NEABs) are identified to occur within the Carboniferous arc volcanic sequence in the Alataw Mountains, Xinjiang. The adakites, which consist of calc-alkaline dacites and rhyolites, are characterized by strong depletion of heavy rare earth elements (HREEs) (e.g., Yb) and Y, high Sr contents and Sr/Y ratios, either with no Eu anomalies or obvious positive Eu anomalies, apparent positive Sr anomalies, and depleted Nb and Ti. The Alataw adakites are very geochemically similar to the adakites that were presumably derived from partial melting of subducting oceanic crust. The rhyolitic adakite in the Alataw Mountains shows low MgO contents of 0.35% and Mg# values of about 17. However, the dacitic adakite shows high MgO contents of 2.67% to 3.32% and Mg# values of 53 to 58, suggesting that the adakite was possibly contaminated by mantle peridotite. On the other hand, the NEABs are characterized by Na-rich (Na2O/K2O > 2.0), high P2O5 and TiO2 contents, positive to weakly negative Nb anomalies, and non-negative Ti anomalies, suggesting that the NEABs were probably derived from partial melting of mantle peridotite that interacted with slab melt under high geothermal gradient. The Alataw adakites were probably derived from partial melting of oceanic crust on the southern margin of the Junggar plate that was subducted beneath the Bole block in the Carboniferous. The Alataw adakites-NE- ABs association implies that the partial melting of the subducting oceanic crust and the succedent interactions between the slab melt and peridotite in the mantle wedge possibly took place under the Bole arc in Carboniferous. On the southern margin of the Junggar plate, the Carboniferous subduction of oceanic crust (basin) was possibly extensive in the late Paleozoic era. In the Alataw area, high geothermal gradient possibly occurred in Carboniferous, and partial melting of subducting oceanic crust was a probable mechanism of Carboniferous regional crust growth.
文摘黑山头组玄武岩-玄武安山岩组合是西准噶尔早石炭世海相火山-沉积建造的重要组成部分,其与高Mg安山岩及O型adakite共生。此次分析的所有样品均为玄武质岩石,Si O2含量为49.62%~55.68%,平均为52.70%;明显高Ti O2(1.16%~1.99%),平均为1.56%;显著富Na2O而贫K2O,Na2O为3.17%~6.35%,平均为4.90%,Na2O/K2O为1.19~26.08,绝大多数样品该比值〉4(平均8.93)。样品明显富集Nb、Sr、Zr等,Nb含量均〉7×10-6(7.29×10-6~12.32×10-6,平均为9.48×10-6);全部样品Sr均〉400×10-6(618×10-6~1107×10-6,平均为825×10-6);Zr〉158×10-6(159×10-6~217×10-6,平均为182.6×10-6);Zr/Y比值〉4(6.63~11.09,平均为8.62)。显著高于一般岛弧玄武质岩类。轻稀土明显富集而重稀土亏损显著,且有基本一致的弱正Eu异常。(La/Nb)PM比值〉0.7(1.23~2.26,平均1.94),(87Sr/86Sr)i=0.7035~0.7039;143Nd/144Nd=0.5128~0.5129;εNd(t)=5.49~7.13。这些地球化学特征与Sajona et al.(1993,1994,1996)确立的富Nb岛弧玄武岩基本一致,而与一般岛弧玄武岩有显著区别。这一发现,为确认西准噶尔早石炭世存在富Nb岛弧玄武岩提供了地球化学佐证,丰富了新疆乃至我国富Nb岛弧玄武岩的产地与层位,也为确认本区早石炭世岛弧构造环境提供了重要依据。