Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martens...Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. How- ever, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in small- sized (〈25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow in- activation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nay1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 re- markably, suggesting BmK I as a valuable probe for studying Nay1.8. And Navl.8 is an important target re- lated to BmK I-evoked pain.展开更多
基金J.Y.H was supported by the National Basic Research Program (973 Program) (No. 2010CB529806), partially by grants from National Nat- ural Science Foundation of China (Grant Nos. 31171064 and 81402903) and Key Research Program of Science and Technology Commissions of Shanghai Municipality (11JC1404300, 13DJ 1400300). L.T. was supported by grants from National Natural Science Foundation of China (Grant Nos. 31371179 and 81300968) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. How- ever, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in small- sized (〈25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow in- activation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nay1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 re- markably, suggesting BmK I as a valuable probe for studying Nay1.8. And Navl.8 is an important target re- lated to BmK I-evoked pain.