Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surger...Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatom展开更多
The brain is a complex organ that requires precise mapping to understand its structure and function.Brain atlases provide a powerful tool for studying brain circuits,discovering biological markers for early diagnosis,...The brain is a complex organ that requires precise mapping to understand its structure and function.Brain atlases provide a powerful tool for studying brain circuits,discovering biological markers for early diagnosis,and developing personalized treatments for neuropsychiatric disorders.Neuromodulation techniques,such as transcranial magnetic stimulation and deep brain stimulation,have revolutionized clinical therapies for neuropsychiatric disorders.However,the lack of fine-scale brain atlases limits the precision and effectiveness of these techniques.Advances in neuroimaging and machine learning techniques have led to the emergence of stereotactic-assisted neurosurgery and navigation systems.Still,the individual variability among patients and the diversity of brain diseases make it necessary to develop personalized solutions.The article provides an overview of recent advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles,advantages,disadvantages,and future trends of these techniques.The article concludes by posing open questions about the future development of individualized brain mapping and navigated neuromodulation.展开更多
Essential language sites and the arcuate fasciculus(AF) have been extensively researched. However, the relationship between them remains insufficiently studied,especially in healthy people. Navigated transcranial ma...Essential language sites and the arcuate fasciculus(AF) have been extensively researched. However, the relationship between them remains insufficiently studied,especially in healthy people. Navigated transcranial magnetic stimulation(n TMS) is increasingly used in language mapping. While enjoying the advantage of non-invasiveness, it is also capable of inducing a virtual lesion in the brain. Thus, it offers the possibility of using the virtuallesion method to study the healthy brain. This study combined n TMS and diffusion tensor imaging(DTI)tractography to investigate the relationship between essential language sites and the AF in 30 healthy right-handedvolunteers. A total of 143 essential language sites were identified using n TMS, and a total of 175 AF terminations were identified using DTI tractography. Sixty-six sites had a direct correlation with the AF, accounting for 46% of the total essential language sites. Forty-seven AF terminations harbored essential language sites, accounting for 27% of the total AF terminations. Upon data rendering to the cortical parcellation system, a region-related heterogeneity of the correlation rate was found. This study provides the first data on the relationship between essential language sites and the AF in healthy adults.展开更多
Title: Analysis of factors influencing true blood loss in navigated total knee replacements. Objectives: To evaluate true blood loss in total knee replacements and analyze the various factors such as gender, BMI, diag...Title: Analysis of factors influencing true blood loss in navigated total knee replacements. Objectives: To evaluate true blood loss in total knee replacements and analyze the various factors such as gender, BMI, diagnosis, size of implants, duration of surgery, tourniquet usage etc. on calculated blood loss using formula by Nadler et al. All the cases included have been done using navigation system and no comparison with conventional jig based surgeries has been attempted. Methods: Retrospectively data of primary cemented total knee replacements performed from October 2012 to August 2013 were evaluated. All surgeries were performed using navigation system. The data collected included patient sex, height, weight and preoperative haemoglobin and hematocrit. The patients’ postoperative data of haemoglobin, hematocrit and drains were collected. All patients had their CBC done on 2nd post operative day. Any data on transfusions that patients received were also collected. We also collected data regarding the size of implant used. We calculated true blood based on formula given by Nadler, Hidalgo & Bloch. We excluded patients whose data were incomplete or who received tranexamic acid. Patients who needed stems (femoral or tibial) were also excluded from this study. Results: The average true calculated blood loss was 959.44 ml. BMI did not have any effect on blood loss. But larger size implants were associated with more blood loss. Conclusion: The preoperative haemoglobin is one of the most important factors in determining transfusion following the knee replacement. Male gender and larger implants are associated with more blood loss. BMI, diagnosis of OA or RA, tourniquet usage and time have no significant effect on blood loss. Our calculated blood loss compares favourably with published literature.展开更多
Retinal laser photocoagulation is a proven, effective treatment for various retinal disorders, including diabetic retinopathy, retinal vein occlusions, and sickle cell retinopathy. To minimize iatrogenic retinal damag...Retinal laser photocoagulation is a proven, effective treatment for various retinal disorders, including diabetic retinopathy, retinal vein occlusions, and sickle cell retinopathy. To minimize iatrogenic retinal damage while maintaining therapeutic effects, retinal laser technology has evolved significantly since its introduction in ophthalmology more than half a century ago. These innovations have included both optimizations of laser parameters in addition to the development of novel laser delivery systems. This review summarizes recent innovations in retinal laser technology, including subthreshold micropulse laser, selective retinal therapy and nanosecond laser, innovative modes of laser delivery including pattern scanning laser, endpoint management, navigated laser, and newly described photo-mediated ultrasound therapy.展开更多
Navigation technology in ophthalmology,colloquially called“eye-tracking”,has been applied to various areas of eye care.This approach encompasses motion-based navigation technology in both ophthalmic imaging and trea...Navigation technology in ophthalmology,colloquially called“eye-tracking”,has been applied to various areas of eye care.This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment.For instance,modern imaging instruments use a real-time eye-tracking system,which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography(OCT),microperimetry,and fluorescence and color imaging.Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation,and positioning guidance of intraocular lenses(IOL)during cataract surgery.It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer,more standardized,and more predictable procedures with better outcomes.Eye-tracking is essential in refractive surgery with excimer laser ablation.Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes.Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers.Eye-tracking has also been used in imaging diagnostics,where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging.This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.展开更多
In the past 2 decades,endoscopic enucleation of the prostate has become a safe and effective surgical treatment for benign prostatic hyperplasia(BPH),with comparable outcomes to traditional surgeries.Transurethral vap...In the past 2 decades,endoscopic enucleation of the prostate has become a safe and effective surgical treatment for benign prostatic hyperplasia(BPH),with comparable outcomes to traditional surgeries.Transurethral vapor enucleation and resection of the prostate(TVERP),transurethral vapor enucleation of the prostate(TVEP),and ultrasound-navigated TVEP(US-TVEP)are new,innovative endoscopic enucleation procedures.These procedures are named Xie’s Prostate Enucleations(Xie’s Procedures for short).Current clinical data indicate that Xie’s Procedures are safe and effective treatment options for patients with BPH,especially for patients with larger prostates.Further prospective,randomized clinical trials compared with traditional transurethral resection of prostate(TURP)are still needed.展开更多
文摘Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatom
基金partially supported by STI2030-Major Projects(No.2021ZD0200200)the Natural Science Foundation of China(Nos.82072099,91432302,31620103905,and 62250058)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB32030200)the National Key Research&Development Program of China(No.2017YFA0105203)
文摘The brain is a complex organ that requires precise mapping to understand its structure and function.Brain atlases provide a powerful tool for studying brain circuits,discovering biological markers for early diagnosis,and developing personalized treatments for neuropsychiatric disorders.Neuromodulation techniques,such as transcranial magnetic stimulation and deep brain stimulation,have revolutionized clinical therapies for neuropsychiatric disorders.However,the lack of fine-scale brain atlases limits the precision and effectiveness of these techniques.Advances in neuroimaging and machine learning techniques have led to the emergence of stereotactic-assisted neurosurgery and navigation systems.Still,the individual variability among patients and the diversity of brain diseases make it necessary to develop personalized solutions.The article provides an overview of recent advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles,advantages,disadvantages,and future trends of these techniques.The article concludes by posing open questions about the future development of individualized brain mapping and navigated neuromodulation.
基金supported in part by grants from the National Natural Science Foundation of China(81272782 and 81472352)the Chinese Society of Neuro-oncology,Chinese AntiCancer Association(CSNO2014MSD01)Special Funds for Instruments of the National Natural Science Foundation of China(81127003)
文摘Essential language sites and the arcuate fasciculus(AF) have been extensively researched. However, the relationship between them remains insufficiently studied,especially in healthy people. Navigated transcranial magnetic stimulation(n TMS) is increasingly used in language mapping. While enjoying the advantage of non-invasiveness, it is also capable of inducing a virtual lesion in the brain. Thus, it offers the possibility of using the virtuallesion method to study the healthy brain. This study combined n TMS and diffusion tensor imaging(DTI)tractography to investigate the relationship between essential language sites and the AF in 30 healthy right-handedvolunteers. A total of 143 essential language sites were identified using n TMS, and a total of 175 AF terminations were identified using DTI tractography. Sixty-six sites had a direct correlation with the AF, accounting for 46% of the total essential language sites. Forty-seven AF terminations harbored essential language sites, accounting for 27% of the total AF terminations. Upon data rendering to the cortical parcellation system, a region-related heterogeneity of the correlation rate was found. This study provides the first data on the relationship between essential language sites and the AF in healthy adults.
文摘Title: Analysis of factors influencing true blood loss in navigated total knee replacements. Objectives: To evaluate true blood loss in total knee replacements and analyze the various factors such as gender, BMI, diagnosis, size of implants, duration of surgery, tourniquet usage etc. on calculated blood loss using formula by Nadler et al. All the cases included have been done using navigation system and no comparison with conventional jig based surgeries has been attempted. Methods: Retrospectively data of primary cemented total knee replacements performed from October 2012 to August 2013 were evaluated. All surgeries were performed using navigation system. The data collected included patient sex, height, weight and preoperative haemoglobin and hematocrit. The patients’ postoperative data of haemoglobin, hematocrit and drains were collected. All patients had their CBC done on 2nd post operative day. Any data on transfusions that patients received were also collected. We also collected data regarding the size of implant used. We calculated true blood based on formula given by Nadler, Hidalgo & Bloch. We excluded patients whose data were incomplete or who received tranexamic acid. Patients who needed stems (femoral or tibial) were also excluded from this study. Results: The average true calculated blood loss was 959.44 ml. BMI did not have any effect on blood loss. But larger size implants were associated with more blood loss. Conclusion: The preoperative haemoglobin is one of the most important factors in determining transfusion following the knee replacement. Male gender and larger implants are associated with more blood loss. BMI, diagnosis of OA or RA, tourniquet usage and time have no significant effect on blood loss. Our calculated blood loss compares favourably with published literature.
文摘Retinal laser photocoagulation is a proven, effective treatment for various retinal disorders, including diabetic retinopathy, retinal vein occlusions, and sickle cell retinopathy. To minimize iatrogenic retinal damage while maintaining therapeutic effects, retinal laser technology has evolved significantly since its introduction in ophthalmology more than half a century ago. These innovations have included both optimizations of laser parameters in addition to the development of novel laser delivery systems. This review summarizes recent innovations in retinal laser technology, including subthreshold micropulse laser, selective retinal therapy and nanosecond laser, innovative modes of laser delivery including pattern scanning laser, endpoint management, navigated laser, and newly described photo-mediated ultrasound therapy.
文摘Navigation technology in ophthalmology,colloquially called“eye-tracking”,has been applied to various areas of eye care.This approach encompasses motion-based navigation technology in both ophthalmic imaging and treatment.For instance,modern imaging instruments use a real-time eye-tracking system,which helps to reduce motion artefacts and increase signal-to-noise ratio in imaging acquisition such as optical coherence tomography(OCT),microperimetry,and fluorescence and color imaging.Navigation in ophthalmic surgery has been firstly applied in laser vision corrective surgery and spread to involve navigated retinal photocoagulation,and positioning guidance of intraocular lenses(IOL)during cataract surgery.It has emerged as one of the most reliable representatives of technology as it continues to transform surgical interventions into safer,more standardized,and more predictable procedures with better outcomes.Eye-tracking is essential in refractive surgery with excimer laser ablation.Using this technology for cataract surgery in patients with high preoperative astigmatism has produced better therapeutic outcomes.Navigated retinal laser has proven to be safer and more accurate compared to the use of conventional slit lamp lasers.Eye-tracking has also been used in imaging diagnostics,where it is essential for proper alignment of captured zones of interest and accurate follow-up imaging.This technology is not routinely discussed in the ophthalmic literature even though it has been truly impactful in our clinical practice and represents a small revolution in ophthalmology.
文摘In the past 2 decades,endoscopic enucleation of the prostate has become a safe and effective surgical treatment for benign prostatic hyperplasia(BPH),with comparable outcomes to traditional surgeries.Transurethral vapor enucleation and resection of the prostate(TVERP),transurethral vapor enucleation of the prostate(TVEP),and ultrasound-navigated TVEP(US-TVEP)are new,innovative endoscopic enucleation procedures.These procedures are named Xie’s Prostate Enucleations(Xie’s Procedures for short).Current clinical data indicate that Xie’s Procedures are safe and effective treatment options for patients with BPH,especially for patients with larger prostates.Further prospective,randomized clinical trials compared with traditional transurethral resection of prostate(TURP)are still needed.