期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
带Navier边界条件的广义随机Navier-Stokes方程解的适定性
1
作者 薛媛媛 江珊 《吉首大学学报(自然科学版)》 CAS 2024年第1期13-18,共6页
对于有界区域二维随机Navier-Stokes方程(有界区域的边界条件为Navier滑移边界条件),给出了该方程弱解在L^(2)和L^(4)中的先验估计,证明了非线性项的单调性,并利用经典的Minty-Browder方法证明了方程随机弱解的整体存在性和唯一性.
关键词 Navier滑移边界条件 阻尼项 随机NAVIER-STOKES方程 适定性
下载PDF
On Leray's problem in an infinitely long pipe with the Navier-slip boundary condition
2
作者 Zijin Li Xinghong Pan Jiaqi Yang 《Science China Mathematics》 SCIE CSCD 2024年第4期819-854,共36页
The original Leray’s problem concerns the well-posedness of weak solutions to the steady incompressible Navier-Stokes equations in a distorted pipe,which approach the Poiseuille flow subject to the no-slip boundary c... The original Leray’s problem concerns the well-posedness of weak solutions to the steady incompressible Navier-Stokes equations in a distorted pipe,which approach the Poiseuille flow subject to the no-slip boundary condition at spatial infinity.In this paper,the same problem with the Navier-slip boundary condition instead of the no-slip boundary condition,is addressed.Due to the complexity of the boundary condition,some new ideas,presented as follows,are introduced to handle the extra difficulties caused by boundary terms.First,the Poiseuille flow in the semi-infinite straight pipe with the Navier-slip boundary condition will be introduced,which will serve as the asymptotic profile of the solution to the generalized Leray’s problem at spatial infinity.Second,a solenoidal vector function defined in the whole pipe,satisfying the Navierslip boundary condition,having the designated flux and equalling the Poiseuille flow at a large distance,will be carefully constructed.This plays an important role in reformulating our problem.Third,the energy estimates depend on a combined L2-estimate of the gradient and the stress tensor of the velocity. 展开更多
关键词 stationary Navier-Stokes system Navier-slip boundary condition Leray's problem
原文传递
THE NAVIER-STOKES EQUATIONS WITH THE KINEMATIC AND VORTICITY BOUNDARY CONDITIONS ON NON-FLAT BOUNDARIES 被引量:1
3
作者 Dan Osborne 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期919-948,共30页
We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditi... We study the initial-boundary value problem of the Navier-Stokes equations for incompressible fluids in a general domain in R^n with compact and smooth boundary, subject to the kinematic and vorticity boundary conditions on the non-flat boundary. We observe that, under the nonhomogeneous boundary conditions, the pressure p can be still recovered by solving the Neumann problem for the Poisson equation. Then we establish the well-posedness of the unsteady Stokes equations and employ the solution to reduce our initial-boundary value problem into an initial-boundary value problem with absolute boundary conditions. Based on this, we first establish the well-posedness for an appropriate local linearized problem with the absolute boundary conditions and the initial condition (without the incompressibility condition), which establishes a velocity mapping. Then we develop apriori estimates for the velocity mapping, especially involving the Sobolev norm for the time-derivative of the mapping to deal with the complicated boundary conditions, which leads to the existence of the fixed point of the mapping and the existence of solutions to our initial-boundary value problem. Finally, we establish that, when the viscosity coefficient tends zero, the strong solutions of the initial-boundary value problem in R^n(n ≥ 3) with nonhomogeneous vorticity boundary condition converge in L^2 to the corresponding Euler equations satisfying the kinematic condition. 展开更多
关键词 Navier-Stokes equations incompressible vorticity boundary condition kinematic boundary condition absolute boundary condition non-flat boundary general domain Stokes operator Neumann problem Poisson equation VORTICITY strong solutions inviscid limit slip boundary condition
下载PDF
Series solutions of stagnation slip flow and heat transfer by the homotopy analysis method 被引量:2
4
作者 R.N.MOHAPATRA K.VAJRAVELU 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2009年第6期893-899,共7页
An analytical approximation for the similarity solutions of the two-and three-dimensional stagnation slip flow and heat transfer is obtained by using the homotopy analysis method. This method is a series expansion met... An analytical approximation for the similarity solutions of the two-and three-dimensional stagnation slip flow and heat transfer is obtained by using the homotopy analysis method. This method is a series expansion method, but it is different from the perturbation technique, because it is independent of small physical parameters at all. Instead, it is based on a continuous mapping in topology so that it is applicable for not only weakly but also strongly nonlinear flow phenomena. Convergent [m,m] homotopy Padé approximants are obtained and compared with the numerical results and the asymptotic approximations. It is found that the homotopy Padé approximants agree well with the numerical results. The effects of the slip length and the thermal slip constant β on the heat transfer characteristics are investigated and discussed. 展开更多
关键词 STAGNATION SLIP flow NAVIER boundary condition nano-fluidics heat transfer HOMOTOPY analysis method
原文传递
On the Inviscid Limit of the 3D Navier–Stokes Equations with Generalized Navier-Slip Boundary Conditions 被引量:3
5
作者 Yuelong Xiao Zhouping Xin 《Communications in Mathematics and Statistics》 SCIE 2013年第3期259-279,共21页
In this paper,we investigate the vanishing viscosity limit problem for the 3-dimensional(3D)incompressible Navier-Stokes equations in a general bounded smooth domain of R^3 with the generalized Navier-slip boundary co... In this paper,we investigate the vanishing viscosity limit problem for the 3-dimensional(3D)incompressible Navier-Stokes equations in a general bounded smooth domain of R^3 with the generalized Navier-slip boundary conditions u^ε·n=0,n×(ω^ε)=[Bu^ε]τon∂Ω.Some uniform estimates on rates of convergence in C([0,T],L2(Ω))and C([0,T],H^1(Ω))of the solutions to the corresponding solutions of the ideal Euler equations with the standard slip boundary condition are obtained. 展开更多
关键词 Navier-Stokes equations Slip boundary conditions Inviscid limit
原文传递
边界滑移对柱塞偶件间油膜流动规律的影响 被引量:2
6
作者 刘赵淼 尉舰巍 +2 位作者 郑会龙 张谭 康振亚 《机械工程学报》 EI CAS CSCD 北大核心 2018年第20期152-158,共7页
斜盘式轴向柱塞泵内柱塞偶件间油膜为相对运动的偶件提供润滑及密封作用。油膜流动将直接影响柱塞偶件的工作性能。深入分析偶件间油膜的流动规律对设计与优化柱塞偶件有重要意义。基于Navier-Stokes(N-S)方程,引入Navier边界滑移推导... 斜盘式轴向柱塞泵内柱塞偶件间油膜为相对运动的偶件提供润滑及密封作用。油膜流动将直接影响柱塞偶件的工作性能。深入分析偶件间油膜的流动规律对设计与优化柱塞偶件有重要意义。基于Navier-Stokes(N-S)方程,引入Navier边界滑移推导偶件间油膜流动方程,根据柱塞运动的周期性规律,分析单个周期内滑移长度和柱塞泵转速对油膜流动剪应力及流量的影响。研究发现:吸油阶段时近柱塞壁面处油膜剪应力随滑移长度增大而减小,流量随着滑移长度增大而增大,柱塞运动速度最大且滑移长度由1μm增大到3μm后,剪应力减小18%,流量增大13.59%;排油阶段柱塞运动速度越大,近柱塞壁面处剪应力和油膜流量与无滑移条件下的差距越小。在滑移长度为1μm的条件下柱塞泵转速由1 500 r/min增大到4 000 r/min时,近柱塞壁面处的油膜剪应力与无滑移条件下相比降低明显,一个周期内油膜总流量与无滑移条件下相比差距减小。 展开更多
关键词 柱塞偶件 油膜流动 Navier边界滑移 油膜剪应力
原文传递
Navier-Stokes equations under slip boundary conditions:Lower bounds to the minimal amplitude of possible time-discontinuities of solutions with two components in L^(∞)(L^(3))
7
作者 Hugo Beirao da Veiga Jiaqi Yang 《Science China Mathematics》 SCIE CSCD 2022年第10期2099-2122,共24页
The main purpose of this paper is to extend the result obtained by Beirao da Veiga(2000)from the whole-space case to slip boundary cases.Denote by a two components of the velocity u.To fix ideas setū=(u_(1),u_(2),0)(... The main purpose of this paper is to extend the result obtained by Beirao da Veiga(2000)from the whole-space case to slip boundary cases.Denote by a two components of the velocity u.To fix ideas setū=(u_(1),u_(2),0)(the half-space)orū=?_(1)ê_(1)+?_(2)ê_(2)(the general boundary case(see(7.1))).We show that there exists a constant K,which enjoys very simple and significant expressions such that if at some timeτ∈(0,T)one has lim sup_(t→^(τ)-0)‖ū(t)‖_(L^(3)(Ω))^(3)<‖ū(τ)‖_(L^(3)(Ω))^(3)+K,then u is continuous atτwith values in L^(3)(Ω).Roughly speaking,the above norm-discontinuity of merely two components of the velocity cannot occur for steps'amplitudes smaller than K.In particular,if the above condition holds at eachτ∈(0,T),the solution is smooth in(0,T)×Ω.Note that here there is no limitation on the width of the norms‖ū(t)‖_(L^(3)(Ω))^(3)·So K is independent of these quantities.Many other related results are discussed and compared among them. 展开更多
关键词 Navier-Stokes equations singular case slip boundary conditions REGULARITY two components
原文传递
Heat Transfer Problem for the Boltzmann Equation in a Channel with Diffusive Boundary Condition
8
作者 Renjun DUAN Shuangqian LIU +1 位作者 Tong YANG Zhu ZHANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第6期1071-1100,共30页
In this paper,the authors study the 1 D steady Boltzmann flow in a channel.The walls of the channel are assumed to have vanishing velocity and given temperaturesθ0andθ1.This problem was studied by Esposito-Lebowitz-... In this paper,the authors study the 1 D steady Boltzmann flow in a channel.The walls of the channel are assumed to have vanishing velocity and given temperaturesθ0andθ1.This problem was studied by Esposito-Lebowitz-Marra(1994,1995)where they showed that the solution tends to a local Maxwellian with parameters satisfying the compressible Navier-Stokes equation with no-slip boundary condition.However,a lot of numerical experiments reveal that the fluid layer does not entirely stick to the boundary.In the regime where the Knudsen number is reasonably small,the slip phenomenon is significant near the boundary.Thus,they revisit this problem by taking into account the slip boundary conditions.Following the lines of[Coron,F.,Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation,J.Stat.Phys.,54(3-4),1989,829-857],the authors will first give a formal asymptotic analysis to see that the flow governed by the Boltzmann equation is accurately approximated by a superposition of a steady CNS equation with a temperature jump condition and two Knudsen layers located at end points.Then they will establish a uniform L∞estimate on the remainder and derive the slip boundary condition for compressible Navier-Stokes equations rigorously. 展开更多
关键词 Boltzmann equation Compressible Navier-Stokes approximation Slip boundary conditions Chapman-Enskog expansion
原文传递
Two-Level Newton Iteration Methods for Navier-Stokes Type Variational Inequality Problem
9
作者 Rong An Hailong Qiu 《Advances in Applied Mathematics and Mechanics》 SCIE 2013年第1期36-54,共19页
This paper deals with the two-level Newton iteration method based on the pressure projection stabilized finite element approximation to solve the numerical solution of the Navier-Stokes type variational inequality pro... This paper deals with the two-level Newton iteration method based on the pressure projection stabilized finite element approximation to solve the numerical solution of the Navier-Stokes type variational inequality problem.We solve a small Navier-Stokes problem on the coarse mesh with mesh size H and solve a large linearized Navier-Stokes problem on the fine mesh with mesh size h.The error estimates derived show that if we choose h=O(|logh|^(1/2)H^(3)),then the two-level method we provide has the same H1 and L^(2) convergence orders of the velocity and the pressure as the one-level stabilized method.However,the L^(2) convergence order of the velocity is not consistent with that of one-level stabilized method.Finally,we give the numerical results to support the theoretical analysis. 展开更多
关键词 Navier-Stokes equations nonlinear slip boundary conditions variational inequality problem stabilized finite element two-level methods
原文传递
Axisymmetric Slow Motion of a Prolate Particle in a Circular Capillary with Slip Surfaces
10
作者 Hong YYeh Huan JKeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2017年第3期343-366,共24页
The problem of the steady migration of an axially symmetric prolate particle along its axis of revolution coinciding with the centerline of a circular capillary is investigated semi-analytically in the limit of low Re... The problem of the steady migration of an axially symmetric prolate particle along its axis of revolution coinciding with the centerline of a circular capillary is investigated semi-analytically in the limit of low Reynolds number,where the viscous fluid may slip at the solid surfaces.A method of distribution of spherical singularities along the axis inside the particle is employed to establish the general solution of the fluid velocity satisfying the boundary conditions at the capillary wall and infinity.The slip condition at the particle surface is then satisfied by using a boundary collocation method to determine the unknown constants in this solution.The hydrodynamic drag force acting on the particle is obtained with good convergence for the cases of a prolate spheroid and a prolate Cassini oval with various values of the slip parameter of the particle,slip parameter of the capillary wall,aspect ratio or shape parameter of the particle,and spacing parameter between the particle and the wall.For the axially symmetric migrations of a spheroid and a Cassini oval in a capillary with no-slip surfaces and of a sphere in a capillary with slip surfaces,our results agree excellently with the numerical solutions obtained earlier.The capillary wall affects the particle migration significantly when the solid surfaces get close to each other.For a specified particle-in-capillary configuration,the normalized drag force exerted on the particle in general decreases with increasing slippage at the solid surfaces,except when the fluid slips little at the capillary wall and the particle-wall spacing parameter is relatively large.For fixed spacing parameter and slip parameters,the drag force increases with an increase in the axial-to-radial aspect ratio(or surface area effective for viscous interaction with the capillary wall)of the particle,but this tendency can be reversed when the particle is highly slippery. 展开更多
关键词 CREEPING flow prolate SPHEROID passini OVAL Navier’s slip SINGULARITY distribution boundary collocation.
下载PDF
ON SOLUTION TO THE NAVIER-STOKES EQUATIONS WITH NAVIER SLIP BOUNDARY CONDITION FOR THREE DIMENSIONAL INCOMPRESSIBLE FLUID 被引量:3
11
作者 Subha PAL Rajib HALOI 《Acta Mathematica Scientia》 SCIE CSCD 2019年第6期1628-1638,共11页
In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by... In this article, we prove the existence and uniqueness of solutions of the NavierStokes equations with Navier slip boundary condition for incompressible fluid in a bounded domain of R^3. The results are established by the Galerkin approximation method and improved the existing results. 展开更多
关键词 NAVIER-STOKES equations GALERKIN method NAVIER SLIP boundary condition strain TENSOR
下载PDF
三维Boussinesq-MHD方程在Navier-slip边界条件下解的存在性
12
作者 张诗语 李俐玫 朱芷逸 《四川师范大学学报(自然科学版)》 CAS 2023年第5期601-607,共7页
研究在光滑有界区域Ω中带Navier-slip边界条件的三维不可压缩Boussinesq-MHD方程组解的存在性问题.首先,运用Galerkin近似法得到方程组弱解的全局存在性.其次在H1范数意义下,通过能量估计得到关于近似解的一致先验估计,再结合标准的极... 研究在光滑有界区域Ω中带Navier-slip边界条件的三维不可压缩Boussinesq-MHD方程组解的存在性问题.首先,运用Galerkin近似法得到方程组弱解的全局存在性.其次在H1范数意义下,通过能量估计得到关于近似解的一致先验估计,再结合标准的极限过程、Gronwall不等式以及初始条件等证明该方程组强解的局部存在唯一性. 展开更多
关键词 Boussinesq-MHD方程 Navier-slip边界条件 Galerkin近似 弱解 强解
下载PDF
可压缩流体Navier-Slip边界条件问题解的存在性研究 被引量:1
13
作者 王雪娜 雍燕 《上海理工大学学报》 CAS 北大核心 2017年第1期15-24,共10页
证明了在有界区域Ω■R^3中带Navier-Slip边界条件的可压缩Navier-Stokes方程的解的局部存在性.在证明过程中,首先利用线性化方法将方程转化为线性方程,再利用Galerkin逼近方法得到线性方程组的弱解,通过能量估计方法,得到关于逼近解的... 证明了在有界区域Ω■R^3中带Navier-Slip边界条件的可压缩Navier-Stokes方程的解的局部存在性.在证明过程中,首先利用线性化方法将方程转化为线性方程,再利用Galerkin逼近方法得到线性方程组的弱解,通过能量估计方法,得到关于逼近解的一致先验估计,取极限得到方程的解的局部存在性. 展开更多
关键词 可压缩NAVIER-STOKES方程 Navier-Slip边界条件 解的存在性
下载PDF
不可压Navier-Stokes方程的投影方法 被引量:2
14
作者 张庆海 李阳 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第13期1-19,共19页
不可压Navier-Stokes方程是流体力学的基本控制方程,其高精度数值模拟具有重要的科学意义.本综述性文章回顾了求解Navier-Stokes方程的投影方法,重点介绍了时空一致四阶精度的GePUP方法.该方法用一个广义投影算子对不可压Navier-Stokes... 不可压Navier-Stokes方程是流体力学的基本控制方程,其高精度数值模拟具有重要的科学意义.本综述性文章回顾了求解Navier-Stokes方程的投影方法,重点介绍了时空一致四阶精度的GePUP方法.该方法用一个广义投影算子对不可压Navier-Stokes方程进行了重新表述,使得投影流速的散度由一个热方程控制,保持了UPPE方法的优点.与UPPE方法不同的是,GePUP方法的推导不依赖于Leray-Helmholtz投影算子的各种性质,并且GePUP表述中的演化变量无需满足散度为零的条件,因此数值近似Leray-Helmholtz投影算子的误差对精度和稳定性的影响非常透明.在GePUP方法中,时间积分和空间离散是完全解耦的,因此对这两个模块都能以“黑匣子”的方式自由替换.时间积分模块的灵活性实现了时间上的高阶精度,并使得GePUP算法能同时适用于低雷诺数流体和高雷诺数流体.空间离散模块的灵活性使得GePUP算法能很好地适应不规则边界.理论分析和数值测试结果都显示,相对于二阶投影方法,GePUP方法无论在精度上还是效率上都具有巨大优势. 展开更多
关键词 不可压NAVIER-STOKES方程 投影方法 时空一致四阶精度 无滑移边界条件 广义投影算子 压力Poisson方程
下载PDF
变截面微管道中高zeta势下幂律流体的旋转电渗滑移流动 被引量:1
15
作者 张天鸽 任美蓉 +2 位作者 崔继峰 陈小刚 王怡丹 《物理学报》 SCIE EI CAS CSCD 北大核心 2022年第13期239-250,共12页
本文研究高zeta势下具有Navier滑移边界条件的幂律流体,在变截面微管道中的垂向磁场作用下的旋转电渗流动.在不使用Debye–Hückel线性近似条件时,利用有限差分法数值计算外加磁场的旋转电渗流的电势分布和速度分布.当行为指数n=1... 本文研究高zeta势下具有Navier滑移边界条件的幂律流体,在变截面微管道中的垂向磁场作用下的旋转电渗流动.在不使用Debye–Hückel线性近似条件时,利用有限差分法数值计算外加磁场的旋转电渗流的电势分布和速度分布.当行为指数n=1时得到的流体为牛顿流体,将本文的分析结果与Debye–Hückel线性近似所得解析近似解作比较,证明本文数值方法的可行性.除此之外,还详细讨论行为指数n、哈特曼数Ha、旋转角速度Ω、电动宽度K及滑移参数β对速度分布的影响,得到当哈特曼数Ha>1时,速度随着哈特曼数Ha的增加而减小;但当哈特曼数Ha<1时,x方向速度u的大小随着Ha的增加而增加. 展开更多
关键词 高zeta势 Navier滑移边界条件 电磁流体力学 有限差分法
下载PDF
Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions
16
作者 RUNDORA Lazarus MAKINDE Oluwole Daniel 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第6期934-944,共11页
A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary... A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton's law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are non- dimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat pro- duction in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter. 展开更多
关键词 Navier slip saturated porous medium third-grade fluid temperature dependent viscosity convective boundary condi-tions
原文传递
BIFURCATION AND DYNAMICS OF THIN SLIPPING FILMS UNDER THE INFLUENCE OF INTERMOLECULAR FORCES
17
作者 HU Guo-hui 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第2期248-252,共5页
The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Resul... The effects of the Born repulsive force on the stability and dynamics of ultra-thin slipping films under the influences of intermolecular forces are investigated with bifurcation theory and numerical simulation. Results show that the repulsive force has a stabilizing effect on the development of perturbations, and can suppress the rupture process induced by the van der Waals attractive force. Although slippage will enhance the growth of disturbances, it does not have influence on the linear cutoff wave number and the final shape of the film thickness as time approaches to infinity. 展开更多
关键词 ultra-thin film DEWETTING Navier slip boundary condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部