This paper studies the power control problem in femtocell system based on Nash non-cooperative game theory. It designs an utility function taking fem stations' transmit power as variable and relates it to the require...This paper studies the power control problem in femtocell system based on Nash non-cooperative game theory. It designs an utility function taking fem stations' transmit power as variable and relates it to the requirements of macro users' and fem users' signal to interference plus noise ratio (SINR). The utility also takes the impact of fem stations' location into account and improves the fairness of non-cooperative game. On this basis, this paper proposes a distributed power control algorithm and proves the existence and uniqueness of Pareto optimal point. The simulation results show that the algorithm improves the convergence speed and system performance through improving users' SINR.展开更多
基金supported by the National Basic Research Program of China(2007CB310607)the National Natural Science Foundation of China(61171094)the National Science & Technology Key Project(2011ZX03001-006-02,2011ZX03005-004-03)
文摘This paper studies the power control problem in femtocell system based on Nash non-cooperative game theory. It designs an utility function taking fem stations' transmit power as variable and relates it to the requirements of macro users' and fem users' signal to interference plus noise ratio (SINR). The utility also takes the impact of fem stations' location into account and improves the fairness of non-cooperative game. On this basis, this paper proposes a distributed power control algorithm and proves the existence and uniqueness of Pareto optimal point. The simulation results show that the algorithm improves the convergence speed and system performance through improving users' SINR.