In this paper, we propose and experimentally investigate a linearly polarized narrow-linewidth random fiber laser(RFL) operating at 1080 nm and boost the output power to kilowatt level with near-diffraction-limited be...In this paper, we propose and experimentally investigate a linearly polarized narrow-linewidth random fiber laser(RFL) operating at 1080 nm and boost the output power to kilowatt level with near-diffraction-limited beam quality using a master oscillation power amplifier. The RFL based on a half-opened cavity, which is composed of a linearly polarized narrow-linewidth fiber Bragg grating and a 500 m piece of polarization-maintained Ge-doped fiber, generates a 0.71 W seed laser with an 88 pm full width at half-maximum(FWHM) linewidth and a 22.5 dB polarization extinction ratio(PER) for power scaling. A two-stage fiber amplifier enhances the seed laser to the maximal 1.01 k W with a PER value of 17 dB and a beam quality of M_x^2=1.15 and M_y^2=1.13. No stimulated Brillouin scattering effect is observed at the ultimate power level, and the FWHM linewidth of the amplified random laser broadens linearly as a function of the output power with a coefficient of about 0.1237 pm∕W.To the best of our knowledge, this is the first demonstration of a linearly polarized narrow-linewidth RFL with even kilowatt-level near-diffraction-limited output, and further performance scaling is ongoing.展开更多
We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio th...We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .展开更多
High frequency stability, narrow-linewidth lasers have been long dreamed of since the invention of the laser. They have recently developed dramatically due to the advent of optical clocks. State-of-the-art narrow-line...High frequency stability, narrow-linewidth lasers have been long dreamed of since the invention of the laser. They have recently developed dramatically due to the advent of optical clocks. State-of-the-art narrow-linewidth lasers have been constructed by using the Pound-Drever-Hall (PDH) technique to lock the laser frequencies to the resonance of ultra-stable external optical cavities with high finesse. This paper introduces the developments of narrow-linewidth lasers, with a focus on the improvements of length stability of optical reference cavities, including optical cavity designs of vibration insensitivity and low thermal noise. Future trends and alternative methods for narrow-linewidth lasers are also discussed.展开更多
报道了基于锯齿波脉冲抑制自相位调制(SPM)的高功率窄线宽单频脉冲光纤激光放大器.通过优化掺镱(Yb)石英有源光纤的长度,在保证输出功率和转换效率的同时提高单频光纤激光放大器中的受激布里渊散射阈值,并采用脉冲波形为锯齿波的种子光...报道了基于锯齿波脉冲抑制自相位调制(SPM)的高功率窄线宽单频脉冲光纤激光放大器.通过优化掺镱(Yb)石英有源光纤的长度,在保证输出功率和转换效率的同时提高单频光纤激光放大器中的受激布里渊散射阈值,并采用脉冲波形为锯齿波的种子光,利用其光强对时间的变化率为常数的特性有效抑制了SPM效应导致的激光光谱展宽现象.主放大级泵浦功率为11.3 W时获得了平均输出功率为3.13 W、脉冲重复频率为20 k Hz的1064 nm单频激光输出;此时脉冲宽度为6.5 ns,对应峰值功率为24 k W,测得光谱线宽仅为83 MHz,接近变换极限水平.与采用常规高斯波形脉冲种子光的对照实验相比,锯齿波形脉冲对SPM所致的光谱展宽具有显著抑制效果,为高功率窄线宽脉冲光纤激光放大器提供了一种行之有效的方法.展开更多
The generation of supercontinuum(SC) often requires ultrashort pulsed lasers with high peak power and gain media with large nonlinear coefficients,such as a long piece of fiber or photonic crystal fiber.In this Letter...The generation of supercontinuum(SC) often requires ultrashort pulsed lasers with high peak power and gain media with large nonlinear coefficients,such as a long piece of fiber or photonic crystal fiber.In this Letter,we propose and demonstrate that high-power SC can be generated through a simple narrow-bandwidth fiber Bragg gratings(FBGs)-based laser cavity without any modulation,based on the mechanism of intense nonlinear effects induced by the inherent self-pulsation generated inside the cavity.In the experiment,an ~80 W SC laser with the spectrum range from <600 nm to 1600 nm was achieved.To the best of our knowledge,this is the first report about SC generation through a simple fiber laser cavity.This work enriches the research content of SC and provides a cost-effective method for high-power SC lasers.展开更多
We report two ultra-stable laser systems automatically frequency-stabilized to two high-finesse optical cavities.By employing analog-digital hybrid proportional integral derivative(PID)controllers,we keep the merits o...We report two ultra-stable laser systems automatically frequency-stabilized to two high-finesse optical cavities.By employing analog-digital hybrid proportional integral derivative(PID)controllers,we keep the merits of wide servo bandwidth and servo accuracy by using analog circuits for the PID controller,and,at the same time,we realize automatic laser frequency locking by introducing digital logic into the PID controller.The lasers can be automatically frequency-stabilized to their reference cavities,and it can be relocked in 0.3 s when interruption happens,i.e.,blocking and unblocking the laser light.These automatic frequency-stabilized lasers are measured to have a frequency instability of 6×10^(-16)at 1 s averaging time and a most probable linewidth of 0.3 Hz.The laser systems were tested for continuous operation over 11 days.Such ultrastable laser systems in long-term robust operation will be beneficial to the applications of optical atomic clocks and precision measurement based on frequency-stabilized lasers.展开更多
基金National Natural Science Foundation of China(NSFC)(61322505,61635005)
文摘In this paper, we propose and experimentally investigate a linearly polarized narrow-linewidth random fiber laser(RFL) operating at 1080 nm and boost the output power to kilowatt level with near-diffraction-limited beam quality using a master oscillation power amplifier. The RFL based on a half-opened cavity, which is composed of a linearly polarized narrow-linewidth fiber Bragg grating and a 500 m piece of polarization-maintained Ge-doped fiber, generates a 0.71 W seed laser with an 88 pm full width at half-maximum(FWHM) linewidth and a 22.5 dB polarization extinction ratio(PER) for power scaling. A two-stage fiber amplifier enhances the seed laser to the maximal 1.01 k W with a PER value of 17 dB and a beam quality of M_x^2=1.15 and M_y^2=1.13. No stimulated Brillouin scattering effect is observed at the ultimate power level, and the FWHM linewidth of the amplified random laser broadens linearly as a function of the output power with a coefficient of about 0.1237 pm∕W.To the best of our knowledge, this is the first demonstration of a linearly polarized narrow-linewidth RFL with even kilowatt-level near-diffraction-limited output, and further performance scaling is ongoing.
文摘We propose a theoretical model to describe external-cavity distributed feedback semiconductor lasers and investigate the impact of the number of external feedback points on linewidth and side-mode suppression ratio through numerical simulation. The simulation results demonstrate that the linewidth of external-cavity semiconductor lasers can be reduced by increasing the external cavity length and feedback ratio, and adding more external feedback points can further narrow the linewidth and enhance the side mode suppression ratio. This research provides insight into the external cavity distributed feedback mechanism and can guide the design of high-performance external cavity semiconductor lasers. .
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2010CB922903,2012CB821302)the National Natural Science Foundation of China(Grant Nos.11104077,11127405)
文摘High frequency stability, narrow-linewidth lasers have been long dreamed of since the invention of the laser. They have recently developed dramatically due to the advent of optical clocks. State-of-the-art narrow-linewidth lasers have been constructed by using the Pound-Drever-Hall (PDH) technique to lock the laser frequencies to the resonance of ultra-stable external optical cavities with high finesse. This paper introduces the developments of narrow-linewidth lasers, with a focus on the improvements of length stability of optical reference cavities, including optical cavity designs of vibration insensitivity and low thermal noise. Future trends and alternative methods for narrow-linewidth lasers are also discussed.
文摘报道了基于锯齿波脉冲抑制自相位调制(SPM)的高功率窄线宽单频脉冲光纤激光放大器.通过优化掺镱(Yb)石英有源光纤的长度,在保证输出功率和转换效率的同时提高单频光纤激光放大器中的受激布里渊散射阈值,并采用脉冲波形为锯齿波的种子光,利用其光强对时间的变化率为常数的特性有效抑制了SPM效应导致的激光光谱展宽现象.主放大级泵浦功率为11.3 W时获得了平均输出功率为3.13 W、脉冲重复频率为20 k Hz的1064 nm单频激光输出;此时脉冲宽度为6.5 ns,对应峰值功率为24 k W,测得光谱线宽仅为83 MHz,接近变换极限水平.与采用常规高斯波形脉冲种子光的对照实验相比,锯齿波形脉冲对SPM所致的光谱展宽具有显著抑制效果,为高功率窄线宽脉冲光纤激光放大器提供了一种行之有效的方法.
基金supported by the National Natural Science Foundation of China (Nos. 62035015 and 62005316)the Innovative Research Groups of Hunan Province (No. 2019JJ10005)
文摘The generation of supercontinuum(SC) often requires ultrashort pulsed lasers with high peak power and gain media with large nonlinear coefficients,such as a long piece of fiber or photonic crystal fiber.In this Letter,we propose and demonstrate that high-power SC can be generated through a simple narrow-bandwidth fiber Bragg gratings(FBGs)-based laser cavity without any modulation,based on the mechanism of intense nonlinear effects induced by the inherent self-pulsation generated inside the cavity.In the experiment,an ~80 W SC laser with the spectrum range from <600 nm to 1600 nm was achieved.To the best of our knowledge,this is the first report about SC generation through a simple fiber laser cavity.This work enriches the research content of SC and provides a cost-effective method for high-power SC lasers.
基金supported by the National Natural Science Foundation of China(No.11927810)。
文摘We report two ultra-stable laser systems automatically frequency-stabilized to two high-finesse optical cavities.By employing analog-digital hybrid proportional integral derivative(PID)controllers,we keep the merits of wide servo bandwidth and servo accuracy by using analog circuits for the PID controller,and,at the same time,we realize automatic laser frequency locking by introducing digital logic into the PID controller.The lasers can be automatically frequency-stabilized to their reference cavities,and it can be relocked in 0.3 s when interruption happens,i.e.,blocking and unblocking the laser light.These automatic frequency-stabilized lasers are measured to have a frequency instability of 6×10^(-16)at 1 s averaging time and a most probable linewidth of 0.3 Hz.The laser systems were tested for continuous operation over 11 days.Such ultrastable laser systems in long-term robust operation will be beneficial to the applications of optical atomic clocks and precision measurement based on frequency-stabilized lasers.