The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with addi...The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with additives of 0.1% wt of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been exposed to a solution of 3.5% NaCl, and further examined for the impact of nano-modification on corrosion performance. The anti-corrosive performance of these additives was investigated through linear polarization technique (LPR), mass loss and mercury porosimetry technique (MIP). From the investigation results, it is found that the addition of CNTs/CNFs causes lower steel corrosion, whereas the pore structure of concrete with CNTs/CNFs can significantly reduce the mass loss rate and the relative permeability.展开更多
Polytetrafluoroethylene(PTFE)has been widely used as a lubrication additive for reducing friction and wear;however,the hydrophobic nature of PTFE restricts its application in eco-friendly water-based lubrication syste...Polytetrafluoroethylene(PTFE)has been widely used as a lubrication additive for reducing friction and wear;however,the hydrophobic nature of PTFE restricts its application in eco-friendly water-based lubrication systems.In this study,for the first time,we designed novel PTFE@silica Janus nanoparticles(JNs)to meet the requirement for additives in water-based lubricants,which have excellent dispersion stability in water attributed to the unique amphiphilic structure.By introducing the lubrication of the aqueous dispersion of the JNs with a concentration of 0.5 wt%,the coefficient of friction(COF)and wear volume were reduced by 63.8%and 94.2%,respectively,comparing to those with the lubrication of pure water.Meanwhile,the JNs suspension also exhibits better lubrication and wear-resistance performances comparing to commercial silica and PTFE suspensions.The excellent tribological behaviors of PTFE@silica JNs as nano-additives could be attributed to the synergetic effect of the two components,where the PTFE provided lubrication through the formed tribofilms on the friction pairs,and the rigid silica further enhanced the wear-resistance performance.Most importantly,the unique structure of JNs makes it possible to use PTFE as an additive in water-lubrication systems.Our study shed light on the design and application of novel JNs nanomaterials as additives to meet the requirements of future industrial applications.展开更多
This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrod...This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrodeposited coatings were produced by using a pulse electrodeposition method. Tribological experiments were conducted by using a linear reciprocating ball on fiat sliding tribometer. Experimental results confirmed that the wear and friction resistance properties were significantly enhanced by doping of nano-effects in the lubricating oil and composite coating. The addition of Al2O3 nanoparticles in the lubricating oil showed the best tribological properties, followed by Ni-Al2O3 composite coatings and nano-oil with graphene. The surface morphology and microstructure of electrodeposited coatings were examined by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. The wear mechanisms of these coatings subjected to tribological testing were investigated by post-test surface analyses. This research provides a novel approach to design durable nano-coatings for tribological applications in various industries such as automotive, aerospace, locomotive and renewable energy technologies.展开更多
文摘The aim of this study is to examine the performance of nano additives in two different sets of mortar specimens armed with reinforcing steel rebars. In particular, three sets of reinforced concrete cylinders with additives of 0.1% wt of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) have been exposed to a solution of 3.5% NaCl, and further examined for the impact of nano-modification on corrosion performance. The anti-corrosive performance of these additives was investigated through linear polarization technique (LPR), mass loss and mercury porosimetry technique (MIP). From the investigation results, it is found that the addition of CNTs/CNFs causes lower steel corrosion, whereas the pore structure of concrete with CNTs/CNFs can significantly reduce the mass loss rate and the relative permeability.
基金financially supported by the National Natural Science Foundation of China(No.52005287)Beijing Institute of Technology Research Fund Program for Young Scholars,the Tribology Science Fund of State Key Laboratory of Tribology(SKLT)in Advanced Equipment(No.SKLTKF21B14)the Fund of Key Laboratory of Advanced Materials of Ministry of Education(No.ADV21-4).
文摘Polytetrafluoroethylene(PTFE)has been widely used as a lubrication additive for reducing friction and wear;however,the hydrophobic nature of PTFE restricts its application in eco-friendly water-based lubrication systems.In this study,for the first time,we designed novel PTFE@silica Janus nanoparticles(JNs)to meet the requirement for additives in water-based lubricants,which have excellent dispersion stability in water attributed to the unique amphiphilic structure.By introducing the lubrication of the aqueous dispersion of the JNs with a concentration of 0.5 wt%,the coefficient of friction(COF)and wear volume were reduced by 63.8%and 94.2%,respectively,comparing to those with the lubrication of pure water.Meanwhile,the JNs suspension also exhibits better lubrication and wear-resistance performances comparing to commercial silica and PTFE suspensions.The excellent tribological behaviors of PTFE@silica JNs as nano-additives could be attributed to the synergetic effect of the two components,where the PTFE provided lubrication through the formed tribofilms on the friction pairs,and the rigid silica further enhanced the wear-resistance performance.Most importantly,the unique structure of JNs makes it possible to use PTFE as an additive in water-lubrication systems.Our study shed light on the design and application of novel JNs nanomaterials as additives to meet the requirements of future industrial applications.
文摘This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrodeposited coatings were produced by using a pulse electrodeposition method. Tribological experiments were conducted by using a linear reciprocating ball on fiat sliding tribometer. Experimental results confirmed that the wear and friction resistance properties were significantly enhanced by doping of nano-effects in the lubricating oil and composite coating. The addition of Al2O3 nanoparticles in the lubricating oil showed the best tribological properties, followed by Ni-Al2O3 composite coatings and nano-oil with graphene. The surface morphology and microstructure of electrodeposited coatings were examined by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. The wear mechanisms of these coatings subjected to tribological testing were investigated by post-test surface analyses. This research provides a novel approach to design durable nano-coatings for tribological applications in various industries such as automotive, aerospace, locomotive and renewable energy technologies.