Poor electron conductivity is the key issue influencing the rate capability of NaTi_(2)(PO_(4))_(3)(NTP).Hence,herein,polyacrylonitrile(PAN)was utilized as a NTP modifier by simply mixing NTP in a liquid PAN suspensio...Poor electron conductivity is the key issue influencing the rate capability of NaTi_(2)(PO_(4))_(3)(NTP).Hence,herein,polyacrylonitrile(PAN)was utilized as a NTP modifier by simply mixing NTP in a liquid PAN suspension,followed by sintering at 850℃ for 5 h.The product with a PAN/NTP mass ratio of 0.3 delivered splendid rate capabilities(achieving lithiation capacities of 282.9,243.0,207.1,173.1,133.5,and 257.5 mAh g^(−1) at 0.1,0.2,0.4,0.8,1.6,and 0.1 A^(−1),respectively)and excellent long cycling life(capacity retention of 165.5 mAh g^(−1) after 1200 cycles at 0.5 A g−1).Based on detailed structural and compositional characterizations,as well as cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS),the uniform N-doped carbon coating stemming from PAN carbonization around the NTP particles promoted electron transfer,while the oxygen vacancies induced by N-doping in NTP facilitated Li+diffusion.The boosted and well matched electronic and ionic conductivities give rise to the optimized electrochemical performance.展开更多
基金This work was supported by Project ZR2022QE165 of Shandong Provincial Natural Science Foundation,China.
文摘Poor electron conductivity is the key issue influencing the rate capability of NaTi_(2)(PO_(4))_(3)(NTP).Hence,herein,polyacrylonitrile(PAN)was utilized as a NTP modifier by simply mixing NTP in a liquid PAN suspension,followed by sintering at 850℃ for 5 h.The product with a PAN/NTP mass ratio of 0.3 delivered splendid rate capabilities(achieving lithiation capacities of 282.9,243.0,207.1,173.1,133.5,and 257.5 mAh g^(−1) at 0.1,0.2,0.4,0.8,1.6,and 0.1 A^(−1),respectively)and excellent long cycling life(capacity retention of 165.5 mAh g^(−1) after 1200 cycles at 0.5 A g−1).Based on detailed structural and compositional characterizations,as well as cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS),the uniform N-doped carbon coating stemming from PAN carbonization around the NTP particles promoted electron transfer,while the oxygen vacancies induced by N-doping in NTP facilitated Li+diffusion.The boosted and well matched electronic and ionic conductivities give rise to the optimized electrochemical performance.