采用传统的熔融淬冷法在空气气氛下成功制备了Ce3+-Tb3+共掺的含有新型立方相Na Lu F4纳米晶的微晶玻璃.通过XRD分析可知微晶玻璃中析出的是与立方相Na YF4同构的新型立方相Na Lu F4纳米晶.利用TEM观察到纳米晶粒均匀地分布在玻璃基质中...采用传统的熔融淬冷法在空气气氛下成功制备了Ce3+-Tb3+共掺的含有新型立方相Na Lu F4纳米晶的微晶玻璃.通过XRD分析可知微晶玻璃中析出的是与立方相Na YF4同构的新型立方相Na Lu F4纳米晶.利用TEM观察到纳米晶粒均匀地分布在玻璃基质中,大小约为20 nm.利用荧光光谱及寿命曲线系统地研究了样品的荧光特性.在315 nm近紫外光激发下,通过有效的能量传递,在Ce3+-Tb3+共掺样品中不仅得到了Ce3+的近紫外光发射,还得到了Tb3+的黄绿光发射.另外,析晶之后,共掺样品的发光强度得到了增强,这可以归因于部分稀土离子进入到了析出的立方相Na Lu F4纳米晶中.研究结果表明,该微晶玻璃是一种优异的发光基质材料,在光电子领域中具有潜在的应用价值.展开更多
The red upconversion emission of Ho^(3+)ions,in the optical window of biological tissue,exhibits excellent prospects in biological applications.This study aims to enhance the red upconversion emission intensity of Ho^...The red upconversion emission of Ho^(3+)ions,in the optical window of biological tissue,exhibits excellent prospects in biological applications.This study aims to enhance the red upconversion emission intensity of Ho^(3+)ions in NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+) nanoparticles through building different core–shell structures with different excitation wavelengths.A significantly enhanced red upconversion emission with a higher red-to-green ratio was successfully obtained in NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+)@NaLuF_(4) core–shell nanoparticles by introducing the Yb^(3+)and Yb^(3+)/Nd^(3+)ions into the NaLuF_(4) shell,with enhancement of the red emission occurring when Yb^(3+)and Nd^(3+)ions in the shell transfer more excitation energy to the Ho^(3+)ions.Investigation of the red emission enhancement mechanism is based on spectral characteristics and lifetimes.We examined the synergistic effect of dual-wavelength co-excitation NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+)@NaLuF_(4):10%Yb^(3+)/15%Nd^(3+)core–shell nanoparticles to establish optimal excitation conditions.It is hoped that this method,using red upconversion emission core–shell nanoparticles with multi-mode excitation,can provide new ways to expand the applications of rare-earth luminescent materials in biomedicine and anti-counterfeiting.展开更多
The efficient production of high-quality scintillators with long radioluminescence afterglow is crucial for high-performance X-ray luminescence extension imaging.However,scaling-up the synthesis of ligand-free scintil...The efficient production of high-quality scintillators with long radioluminescence afterglow is crucial for high-performance X-ray luminescence extension imaging.However,scaling-up the synthesis of ligand-free scintillators to fabricate large-area X-ray imaging screens for industrial applications remains a challenge.In this study,we report an efficient method to synthesize ligand-free,lanthanide-doped microscintillators by a one-pot reaction via the concentrated hydrothermal method.The as-synthesized microscintillators exhibit prolonged persistent radioluminescence for up to 30 days after X-ray exposure and remain high stability in air or water for more than 18 months without deterioration.Monte Carlo simulations indicate that the size effect is responsible for the excellent afterglow performance of the microscintillators.We employ these high-quality lanthanide-doped microscintillators to fabricate a large-area X-ray imaging detector using a blade-coating method,a spatial resolution of 24.9 lp/mm for X-ray imaging.Our study offers a solution for scaling-up the synthesis of low-cost microscintillators for practical applications.展开更多
In this work,monodisperseβ-NaLuF_(4):Yb,Er microcrystals with intense upconversion emission were synthesized via a modified hydrothermal method.With the increase of reactant concentration,their production yield is in...In this work,monodisperseβ-NaLuF_(4):Yb,Er microcrystals with intense upconversion emission were synthesized via a modified hydrothermal method.With the increase of reactant concentration,their production yield is increased obviously,and the upconversion emission intensity inβ-NaLuF_(4):Yb,Er microcrystals is also enhanced significantly.The luminescence enhancement should be attributed to minimal internal OH defects,validated by a combination of analytical X-ray diffraction(XRD),energy dispersive spectrum(EDS),and Eu^(3+)structural probe measurements.We also reveal that high Na^(+):RE~(3+)ratio in theβ-NaLuF_(4):Yb,Er microcrystals prepared under Na^(~)+-rich reaction will arouse the increased repulsive energy ofβ-NaLuF_(4)microcrystals between F^(~)-and OH^(~)-anions and then facilitate the substitution of large OH^(-)ions by small F^(~)-ions under F^(~)--rich reaction conditions.Minimal OH^(-)concentrations can limit nonradiative relaxation and promote excitation energy harvesting for high upconversion efficiency.The presented results not only offer a facile method for the simultaneous production yield and luminescence intensity increase ofβ-NaREF_(4)microcrystals,but also uncover a better insight into the upconversion emission alterations,which is favorable to broaden their practical applications.展开更多
文摘采用传统的熔融淬冷法在空气气氛下成功制备了Ce3+-Tb3+共掺的含有新型立方相Na Lu F4纳米晶的微晶玻璃.通过XRD分析可知微晶玻璃中析出的是与立方相Na YF4同构的新型立方相Na Lu F4纳米晶.利用TEM观察到纳米晶粒均匀地分布在玻璃基质中,大小约为20 nm.利用荧光光谱及寿命曲线系统地研究了样品的荧光特性.在315 nm近紫外光激发下,通过有效的能量传递,在Ce3+-Tb3+共掺样品中不仅得到了Ce3+的近紫外光发射,还得到了Tb3+的黄绿光发射.另外,析晶之后,共掺样品的发光强度得到了增强,这可以归因于部分稀土离子进入到了析出的立方相Na Lu F4纳米晶中.研究结果表明,该微晶玻璃是一种优异的发光基质材料,在光电子领域中具有潜在的应用价值.
基金Project supported by the National Natural Science Foundation of China(12004303,62005213)the Natural Science Basic Research Plan in Shaanxi Province of China(2019JQ-864)+2 种基金the Key R&D Program of Shaanxi Province(2020GY-101,2020GY-127)the Xi’an Science and Technology Innovation Talent Service Enterprise Project(2020KJRC0107,2020KJRC0112)Xi’an University of Posts and Telecommunications Joint Postgraduate Cultivation Workstation(YJGJ201905)。
文摘The red upconversion emission of Ho^(3+)ions,in the optical window of biological tissue,exhibits excellent prospects in biological applications.This study aims to enhance the red upconversion emission intensity of Ho^(3+)ions in NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+) nanoparticles through building different core–shell structures with different excitation wavelengths.A significantly enhanced red upconversion emission with a higher red-to-green ratio was successfully obtained in NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+)@NaLuF_(4) core–shell nanoparticles by introducing the Yb^(3+)and Yb^(3+)/Nd^(3+)ions into the NaLuF_(4) shell,with enhancement of the red emission occurring when Yb^(3+)and Nd^(3+)ions in the shell transfer more excitation energy to the Ho^(3+)ions.Investigation of the red emission enhancement mechanism is based on spectral characteristics and lifetimes.We examined the synergistic effect of dual-wavelength co-excitation NaLuF_(4):20%Yb^(3+)/2%Ho^(3+)/12%Ce^(3+)@NaLuF_(4):10%Yb^(3+)/15%Nd^(3+)core–shell nanoparticles to establish optimal excitation conditions.It is hoped that this method,using red upconversion emission core–shell nanoparticles with multi-mode excitation,can provide new ways to expand the applications of rare-earth luminescent materials in biomedicine and anti-counterfeiting.
基金the National Key Research&Development Program of China(Nos.2020YFA0709900,2020YFA0210800)the National Natural Science Foundation of China(Nos.22027805,62134003,22104016)+1 种基金the Natural Science Foundation of Fujian Province(Nos.2022J01709,2023J01384)the Major Project of Science and Technology of Fujian Province(No.2020HZ06006)。
文摘The efficient production of high-quality scintillators with long radioluminescence afterglow is crucial for high-performance X-ray luminescence extension imaging.However,scaling-up the synthesis of ligand-free scintillators to fabricate large-area X-ray imaging screens for industrial applications remains a challenge.In this study,we report an efficient method to synthesize ligand-free,lanthanide-doped microscintillators by a one-pot reaction via the concentrated hydrothermal method.The as-synthesized microscintillators exhibit prolonged persistent radioluminescence for up to 30 days after X-ray exposure and remain high stability in air or water for more than 18 months without deterioration.Monte Carlo simulations indicate that the size effect is responsible for the excellent afterglow performance of the microscintillators.We employ these high-quality lanthanide-doped microscintillators to fabricate a large-area X-ray imaging detector using a blade-coating method,a spatial resolution of 24.9 lp/mm for X-ray imaging.Our study offers a solution for scaling-up the synthesis of low-cost microscintillators for practical applications.
基金Project supported by the National Natural Science Foundation of China(11504317,51503177)the International Partnership Program of Chinese Academy of Sciences(121522KYSB20190022)。
文摘In this work,monodisperseβ-NaLuF_(4):Yb,Er microcrystals with intense upconversion emission were synthesized via a modified hydrothermal method.With the increase of reactant concentration,their production yield is increased obviously,and the upconversion emission intensity inβ-NaLuF_(4):Yb,Er microcrystals is also enhanced significantly.The luminescence enhancement should be attributed to minimal internal OH defects,validated by a combination of analytical X-ray diffraction(XRD),energy dispersive spectrum(EDS),and Eu^(3+)structural probe measurements.We also reveal that high Na^(+):RE~(3+)ratio in theβ-NaLuF_(4):Yb,Er microcrystals prepared under Na^(~)+-rich reaction will arouse the increased repulsive energy ofβ-NaLuF_(4)microcrystals between F^(~)-and OH^(~)-anions and then facilitate the substitution of large OH^(-)ions by small F^(~)-ions under F^(~)--rich reaction conditions.Minimal OH^(-)concentrations can limit nonradiative relaxation and promote excitation energy harvesting for high upconversion efficiency.The presented results not only offer a facile method for the simultaneous production yield and luminescence intensity increase ofβ-NaREF_(4)microcrystals,but also uncover a better insight into the upconversion emission alterations,which is favorable to broaden their practical applications.