In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to ...In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to the limitations of their preparation process and other factors, high-efficiency and large-area flexible perovskite solar cells still have a lot of room for development. In our work, a flexible perovskite solar cell(PEN/ITO/Sn O2/KCl/Cs0.05(MA0.17 FA0.83)0.95 Pb(I0.83 Br0.17)3/spiro/Au) was prepared using a low temperature(no higher than 100°C) solution process, and the device with the highest efficiency of 16.16%was obtained by adjusting the concentration of the KCl modified layer. Meanwhile, the efficiency of the large area(1 cm2) flexible solar cell was higher than 13%. At the same time, the passivation of the KCl interface modification layer inhibits the formation of the defect states, which reduced the surface recombination of the perovskite and improved the carrier transport performance, and the hysteresis effect of the device was also reduced accordingly.展开更多
In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metall...In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metallic. Characterization of the treated samples indicated that thin Pt metal films were uniformly deposited on the NaCl particles. Immersion of the treated NaCl particles in water revealed that they floated to the surface of the water with the increase in the immersion time, although their original cubic shapes remained unchanged. The floating phenomenon of the Pt-coated NaCl particles, as mentioned above, suggests that NaCl was dissolved by the permeation of water through invisible defects such as grain boundaries in the Pt films, leading to the formation of hollow particle-like materials. It should be noted that uniform film deposition on the NaCl particles could also be achieved by sputtering with Au or Cu. Based on the obtained results, our sputtering method allows uniform surface modification of water-soluble and water-reactive powders that cannot be treated by conventional wet process using water.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61974074)the Fundamental Research Funds for the Central Universities,Nankai University(Grant No.63201176,92022027)。
文摘In recent years, flexible perovskite solar cells have received extensive attention and rapid development due to their advantages of lightweight, portability, wearability and applications in near-space. However,due to the limitations of their preparation process and other factors, high-efficiency and large-area flexible perovskite solar cells still have a lot of room for development. In our work, a flexible perovskite solar cell(PEN/ITO/Sn O2/KCl/Cs0.05(MA0.17 FA0.83)0.95 Pb(I0.83 Br0.17)3/spiro/Au) was prepared using a low temperature(no higher than 100°C) solution process, and the device with the highest efficiency of 16.16%was obtained by adjusting the concentration of the KCl modified layer. Meanwhile, the efficiency of the large area(1 cm2) flexible solar cell was higher than 13%. At the same time, the passivation of the KCl interface modification layer inhibits the formation of the defect states, which reduced the surface recombination of the perovskite and improved the carrier transport performance, and the hysteresis effect of the device was also reduced accordingly.
文摘In this study, the surfaces of NaCl particles were modified with metal films using the polygonal barrel-sputtering method. When Pt was sputtered on NaCl particles, the individual particles changed from white to metallic. Characterization of the treated samples indicated that thin Pt metal films were uniformly deposited on the NaCl particles. Immersion of the treated NaCl particles in water revealed that they floated to the surface of the water with the increase in the immersion time, although their original cubic shapes remained unchanged. The floating phenomenon of the Pt-coated NaCl particles, as mentioned above, suggests that NaCl was dissolved by the permeation of water through invisible defects such as grain boundaries in the Pt films, leading to the formation of hollow particle-like materials. It should be noted that uniform film deposition on the NaCl particles could also be achieved by sputtering with Au or Cu. Based on the obtained results, our sputtering method allows uniform surface modification of water-soluble and water-reactive powders that cannot be treated by conventional wet process using water.