To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of brocco...To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.展开更多
PHOTOSYSTEM Ⅱ(PS Ⅱ) particles capable of O<sub>2</sub> evolution contain D1, D2 transmembrane pro-teins, and three extrinsic polypeptides which are exposed to the outer aqueous phase with ap-parent mol...PHOTOSYSTEM Ⅱ(PS Ⅱ) particles capable of O<sub>2</sub> evolution contain D1, D2 transmembrane pro-teins, and three extrinsic polypeptides which are exposed to the outer aqueous phase with ap-parent molecular masses of 33, 23, 18 kD. The three proteins can be partially or totally re-moved by treating the PS Ⅱ membranes with high concentrations of salt or other methods,展开更多
[Objective] In order to study the effects of brassinosteroid on salinity toler- ance of cotton. [Method] Three application modes (leaf application, root application and leaf/root application) of brassinosteroid for ...[Objective] In order to study the effects of brassinosteroid on salinity toler- ance of cotton. [Method] Three application modes (leaf application, root application and leaf/root application) of brassinosteroid for cotton under NaCI stress were de- signed to understand the effects of brassinosteroid on Na+ and CI- accumulation, osmotic adjustment substance (proline) and biomass accumulation of cotton under NaCI stress. [Result] NaCI inhibited the growth of cotton seedlings. Compared with the control group, the biomass of cotton seedlings was decreased, Na+ and CI- contents, MDA content and proline content were increased in cotton under NaCI stress. Under the NaCI stress, three application modes of brassinosteroid significant- ly improved the biomass, chlorophyll content in leaves, root activity and proline content; while Na~ and CI- content, MDA content were decreased. The enhancement of root activity and root physiological functions were more marked in root application and leaf/root application treatments than in leaf/root application treatment. [Conclu- sion] Three application modes of brassinosteroid all could alleviate the NaCI injuries on cotton, but root application and root/leaf application modes of brassinosteroid for cotton under NaCI stress are superior to the leaf application.展开更多
基金Project supported by the National High-Tech R&D Program(863) of China(No.2008AA10Z111)the National Natural Science Foundation of China(No.30900984)+1 种基金the Fok Ying Tong Education Foundation (No.104034)the Program for New Century Excellent Talents in University(No.NCET-05-0516),China
文摘To understand the regulation mechanism of NaCI on glucosinolate metabolism in broccoli sprouts, the germination rate, fresh weight, contents of glucosinolates and sulforaphane, as well as myrosinase activity of broccoli sprouts germinated under 0, 20, 40, 60, 80, and 100 mmol/L of NaCI were investigated in our experiment. The results showed that glucoerucin, glucobrassicin, and 4-hydroxy glucobrassicin in 7-d-old broccoli sprouts were significantly enhanced and the activity of myrosinase was inhibited by 100 mmol/L of NaCI. However, the total glucosinolate content in 7-d-old broccoli sprouts was markedly decreased although the fresh weight was significantly increased after treatment with NaCI at relatively low concentrations (20, 40, and 60 mmol/L). NaCI treatment at the concentration of 60 mmol/L for 5 d maintained higher biomass and comparatively higher content of glucosinolates in sprouts of broccoli with decreased myrosinase activity. A relatively high level of NaCI treatment (100 mmol/L) significantly increased the content of sulforaphane in 7-d-old broccoli sprouts compared with the control. These results indicate that broccoli sprouts grown under a suitable concentration of NaCI could be desirable for human nutrition.
文摘PHOTOSYSTEM Ⅱ(PS Ⅱ) particles capable of O<sub>2</sub> evolution contain D1, D2 transmembrane pro-teins, and three extrinsic polypeptides which are exposed to the outer aqueous phase with ap-parent molecular masses of 33, 23, 18 kD. The three proteins can be partially or totally re-moved by treating the PS Ⅱ membranes with high concentrations of salt or other methods,
基金Supported by National Science Foundation of China(31201139)National R&D Project of Transgenic Crops of Ministry of Science and Technology of China(2011ZX08005001)Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2065)~~
文摘[Objective] In order to study the effects of brassinosteroid on salinity toler- ance of cotton. [Method] Three application modes (leaf application, root application and leaf/root application) of brassinosteroid for cotton under NaCI stress were de- signed to understand the effects of brassinosteroid on Na+ and CI- accumulation, osmotic adjustment substance (proline) and biomass accumulation of cotton under NaCI stress. [Result] NaCI inhibited the growth of cotton seedlings. Compared with the control group, the biomass of cotton seedlings was decreased, Na+ and CI- contents, MDA content and proline content were increased in cotton under NaCI stress. Under the NaCI stress, three application modes of brassinosteroid significant- ly improved the biomass, chlorophyll content in leaves, root activity and proline content; while Na~ and CI- content, MDA content were decreased. The enhancement of root activity and root physiological functions were more marked in root application and leaf/root application treatments than in leaf/root application treatment. [Conclu- sion] Three application modes of brassinosteroid all could alleviate the NaCI injuries on cotton, but root application and root/leaf application modes of brassinosteroid for cotton under NaCI stress are superior to the leaf application.