Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the indu...Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the induction of isopropyl-β-D-thiogalactoside(IPTG) and the purification of Ni-NTA column, we finally obtained purified NS1 protein. T7-phage display system was used to screen the proteins that interacted with NS1 from lung cell cDNA li brary. The selected positive clones were identified by DNA sequencing and analyzed by BLAST program in Gene Bank. Two proteins were obtained as NS1 binding proteins, Homo sapiens nucleolar and coiled-body phosphoprotein 1(NOLC1) and Homo sapiens similar to colon cancer-associated antigen. By co-immunoprecipitation and other me thods, Homo sapiens NOLC1 was found to interact with the NS1 protein, the results would provide the basis for fur ther studying biological function of NS1 protein.展开更多
热休克蛋白27(Heat shock protein 27,HSP27)是一种具有多重功能的小热休克蛋白,它在一些病毒的生命周期中也发挥着重要作用。为研究HSP27对流感病毒感染的调节作用,首先在原核及真核细胞中克隆并表达了人源的HSP27蛋白,并验证了HSP27和...热休克蛋白27(Heat shock protein 27,HSP27)是一种具有多重功能的小热休克蛋白,它在一些病毒的生命周期中也发挥着重要作用。为研究HSP27对流感病毒感染的调节作用,首先在原核及真核细胞中克隆并表达了人源的HSP27蛋白,并验证了HSP27和A型流感病毒NS1蛋白能够相互结合。通过荧光素酶检测试验发现,HSP27可以抑制病毒感染细胞中β干扰素(IFN-β)的表达,但不依赖于其自身的磷酸化状态,而且HSP27与NS1共同对于IFN-β的表达具有叠加抑制效果。进一步的结果表明HSP27可能通过RIG-I样RNA解旋酶(RLH)途径中MDA5因子抑制IFN-β的表达。研究表明,HSP27在被感染细胞的天然免疫中发挥一定作用,有助于进一步阐明宿主因子对于流感病毒感染的调节机理。展开更多
基金Supported by the National Natural Science Foundation of China(No.30671852)the Open Research Fund Program of the State Key Laboratory of Virology of China(Nos.2010009, 2007007) the Research Fund of the Key Laboratory of Department of Education of Liaoning Province, China(No.2009S043)
文摘Avian influenza virus(AIV) nonstructural 1(NS1) gene was amplified by real-time polymerse chain reac tion(RT-PCR) and inserted into pET28a, then transformed into E. coli BL21(DE3) competent cell. With the induction of isopropyl-β-D-thiogalactoside(IPTG) and the purification of Ni-NTA column, we finally obtained purified NS1 protein. T7-phage display system was used to screen the proteins that interacted with NS1 from lung cell cDNA li brary. The selected positive clones were identified by DNA sequencing and analyzed by BLAST program in Gene Bank. Two proteins were obtained as NS1 binding proteins, Homo sapiens nucleolar and coiled-body phosphoprotein 1(NOLC1) and Homo sapiens similar to colon cancer-associated antigen. By co-immunoprecipitation and other me thods, Homo sapiens NOLC1 was found to interact with the NS1 protein, the results would provide the basis for fur ther studying biological function of NS1 protein.
文摘热休克蛋白27(Heat shock protein 27,HSP27)是一种具有多重功能的小热休克蛋白,它在一些病毒的生命周期中也发挥着重要作用。为研究HSP27对流感病毒感染的调节作用,首先在原核及真核细胞中克隆并表达了人源的HSP27蛋白,并验证了HSP27和A型流感病毒NS1蛋白能够相互结合。通过荧光素酶检测试验发现,HSP27可以抑制病毒感染细胞中β干扰素(IFN-β)的表达,但不依赖于其自身的磷酸化状态,而且HSP27与NS1共同对于IFN-β的表达具有叠加抑制效果。进一步的结果表明HSP27可能通过RIG-I样RNA解旋酶(RLH)途径中MDA5因子抑制IFN-β的表达。研究表明,HSP27在被感染细胞的天然免疫中发挥一定作用,有助于进一步阐明宿主因子对于流感病毒感染的调节机理。