China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though t...China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.展开更多
Effects of factors such as slope, surface soil textuie, fertilization andcrop cover with different rainfall intensities on phosphorus (P) losses in farmland runoff of theDianchi Lake Watershed in Yunnan Province of Ch...Effects of factors such as slope, surface soil textuie, fertilization andcrop cover with different rainfall intensities on phosphorus (P) losses in farmland runoff of theDianchi Lake Watershed in Yunnan Province of China were studied through a rainfall simulation testusing a red soil, one of the most widely distributed soils of the study area. Results showed thatthe runoff concentrations of total phosphorus (TP) and P losses differed with the slope, beinghighest when the slope was 18 deg. At twodifferent rainfall intensities, the runoff TP and P losseshad a similar decreasing trend as the surface soil texture became coarser, therefore applying thegrit would decrease P in runofi from soils of farmland on slopes with heavier textures. With wheatas a crop cover the runoff TP concentrations and P losses were significantly lower than those of thebare soil. This showed that plant cover would greatly decrease P in runoff from the farmland of thestudy area. The TP concentration in runoff from the soil two days after fertilization doubled whencompared with that from the non-fertilized soil, indicating that fertilization could mean a dramaticrise in P runoff if irrigation or heavy rainfall occurred immediately after application and that nofertilization before a rain and no irrigation immediately after fertilization would reduce runoff Ploss from the farmland of the study area.展开更多
A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2...A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2 (acac = acetyl- acetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures.展开更多
In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safe...In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safety were studied.The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants.The runoff quantity was decreased by 16.67%-47.00%and the loads of total suspended solids (TSS),chemical oxygen demand (COD),total nit...展开更多
CeO2nanoparticles(NPs) were synthesized in alkaline medium via the homogeneous precipitation method and were subsequently calcined at 80 ℃/24 h(assigned as CeO2-80) and 500 ℃/2 h(assigned as CeO2-500). The as-prepar...CeO2nanoparticles(NPs) were synthesized in alkaline medium via the homogeneous precipitation method and were subsequently calcined at 80 ℃/24 h(assigned as CeO2-80) and 500 ℃/2 h(assigned as CeO2-500). The as-prepared materials and the commercial ceria(assigned as CeO2-com) were characterized using TGA-MS, XRD, SEM-EDX, UV-vis DRS and IEP techniques. The photocatalytic performances of all obtained photocatalysts were assessed by the degradation of Congo red azo-dye(CR) under UVAlight irradiation at various environmental key factors(e.g., reaction time and calcination temperature).Results reveal that CeO2compounds crystalize with cubic phase, CeO2-500 exhibits smaller crystallite size(9 nm vs 117 nm) than that of bare CeO2-com. SEM analysis shows that the materials are sphericallike in shape NPs with strong assembly of CeO2NPs observed in the CeO2-500 NPs. EDX analysis confirms the stoichiometry of CeO2NPs. UV-vis DRS measurement reveals that, CeO2-500 NPs exhibits a red-shift of absorption band and a more narrow bandgap(2.6 eV vs 3.20 eV) than that of bare CeO2-com. On the contrary, Urbach energy of Eu is found to be increased from 0.12 eV(CeO2-com) to 0.17 eV(CeO2-500),highlighting an increase of crystalline size and internal microstrain in the CeO2-500 NPs sample. Zeta potential(IEP) of CeO2-500 NPs is found to be 7.2. UVA-light-responsive photocatalytic activity is observed with CeO2-500 NPs at a rate constant of 10×10-3min-1, which is four times higher than that of CeO2-com(Kapp=2.4×10-3min-1) for the degradation of CR. Pseudo-first-order kinetic model gives the best fit. On the basis of the energy band diagram positions, the enhanced photocatalytic performance of CeO2-500 nano-catalyst can be ascribed to O2-, ’OH and R’+as the primary oxidative species involved in the degradation of RC under UVA-light irradiation.展开更多
The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplan...The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands(USFCWs) were investigated under the long-term exposure of different graphene oxides(GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process(NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.展开更多
基金Project supported by the Canadian International Development Agency, Canada and the Chinese Academy of Sciences,China (No. KZCX2-413).
文摘China is now the world’s largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man’s disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of China’s global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize. China’s overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it. The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.
基金Project supported by the Applied and Basic Research Foundation of Yunnan Province (No. 1999C0011G).
文摘Effects of factors such as slope, surface soil textuie, fertilization andcrop cover with different rainfall intensities on phosphorus (P) losses in farmland runoff of theDianchi Lake Watershed in Yunnan Province of China were studied through a rainfall simulation testusing a red soil, one of the most widely distributed soils of the study area. Results showed thatthe runoff concentrations of total phosphorus (TP) and P losses differed with the slope, beinghighest when the slope was 18 deg. At twodifferent rainfall intensities, the runoff TP and P losseshad a similar decreasing trend as the surface soil texture became coarser, therefore applying thegrit would decrease P in runofi from soils of farmland on slopes with heavier textures. With wheatas a crop cover the runoff TP concentrations and P losses were significantly lower than those of thebare soil. This showed that plant cover would greatly decrease P in runoff from the farmland of thestudy area. The TP concentration in runoff from the soil two days after fertilization doubled whencompared with that from the non-fertilized soil, indicating that fertilization could mean a dramaticrise in P runoff if irrigation or heavy rainfall occurred immediately after application and that nofertilization before a rain and no irrigation immediately after fertilization would reduce runoff Ploss from the farmland of the study area.
文摘A simple and efficient solution-based method for the synthesis of Pd-Ni bimetallic nanoparticles (NPs) has been developed. A series of Pd-Ni bimetallic NPs were readily achieved by reduction of PdC12 and Ni(acac)2 (acac = acetyl- acetonate) in the presence of oleylamine (OAm), oleic acid (OA) and benzyl alcohol. Furthermore, by using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), we demonstrate that the as-prepared Pd-Ni bimetallic NPs have core-shell structures with a Pd-rich core and a Ni-rich shell. In addition, the as-obtained Pd-Ni bimetallic NPs with varying compositions show excellent catalytic activities in the Miyaura-Suzuki reaction. When the nickel molar percentage was 0.23 to 0.65, the conversion with the as-obtained Pd-Ni bimetallic catalysts was above 90%. It is believed that this strategy can be employed to produce a variety of other well-defined core-shell type multimetallic nanostructures.
文摘In this article,alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin,starch, acrylamide,and acrylic acid).Its practical application effect and environmental safety were studied.The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants.The runoff quantity was decreased by 16.67%-47.00%and the loads of total suspended solids (TSS),chemical oxygen demand (COD),total nit...
文摘CeO2nanoparticles(NPs) were synthesized in alkaline medium via the homogeneous precipitation method and were subsequently calcined at 80 ℃/24 h(assigned as CeO2-80) and 500 ℃/2 h(assigned as CeO2-500). The as-prepared materials and the commercial ceria(assigned as CeO2-com) were characterized using TGA-MS, XRD, SEM-EDX, UV-vis DRS and IEP techniques. The photocatalytic performances of all obtained photocatalysts were assessed by the degradation of Congo red azo-dye(CR) under UVAlight irradiation at various environmental key factors(e.g., reaction time and calcination temperature).Results reveal that CeO2compounds crystalize with cubic phase, CeO2-500 exhibits smaller crystallite size(9 nm vs 117 nm) than that of bare CeO2-com. SEM analysis shows that the materials are sphericallike in shape NPs with strong assembly of CeO2NPs observed in the CeO2-500 NPs. EDX analysis confirms the stoichiometry of CeO2NPs. UV-vis DRS measurement reveals that, CeO2-500 NPs exhibits a red-shift of absorption band and a more narrow bandgap(2.6 eV vs 3.20 eV) than that of bare CeO2-com. On the contrary, Urbach energy of Eu is found to be increased from 0.12 eV(CeO2-com) to 0.17 eV(CeO2-500),highlighting an increase of crystalline size and internal microstrain in the CeO2-500 NPs sample. Zeta potential(IEP) of CeO2-500 NPs is found to be 7.2. UVA-light-responsive photocatalytic activity is observed with CeO2-500 NPs at a rate constant of 10×10-3min-1, which is four times higher than that of CeO2-com(Kapp=2.4×10-3min-1) for the degradation of CR. Pseudo-first-order kinetic model gives the best fit. On the basis of the energy band diagram positions, the enhanced photocatalytic performance of CeO2-500 nano-catalyst can be ascribed to O2-, ’OH and R’+as the primary oxidative species involved in the degradation of RC under UVA-light irradiation.
基金financially supported by the National Key R&D Program of China(No.2017YFC0505901)the National Natural Science Foundation of China(Nos.41401548+2 种基金 41772244)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.HC201622)the China Scholarship Council(Nos.201804910339,201806175055)
文摘The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands(USFCWs) were investigated under the long-term exposure of different graphene oxides(GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process(NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.