该文以中国冬小麦主要种植区黄淮海平原典型县市的冬小麦为研究对象,以植物净初级生产力模型对冬小麦估产进行研究。其中光合有效辐射数据(PAR)主要通过TOM S传感器紫外反射率月数据来计算获得。并且通过投影转换和内插方法,将分辨率由...该文以中国冬小麦主要种植区黄淮海平原典型县市的冬小麦为研究对象,以植物净初级生产力模型对冬小麦估产进行研究。其中光合有效辐射数据(PAR)主要通过TOM S传感器紫外反射率月数据来计算获得。并且通过投影转换和内插方法,将分辨率由经度1.25度、纬度1度转为250 m。光合有效辐射分量(f PAR)主要通过250 m分辨率M OD IS的最大值合成法生成的N DV I月数据和f PAR之间的统计直线关系(f PAR=a N DV I+b)来反演。在研究中光能转化有机质效率(ε)被视为常数,其值通过前人研究结果确定。然后计算冬小麦净初级生产力(N P P=ε×f PAR×PAR)。文中主要考虑冬小麦产量形成关键期内N P P的形成,然后将累积的N P P转化为作物干物质的量,最后通过冬小麦收获指数修正,得到估计的冬小麦产量。而且利用地面实际调查产量数据对所预测的植物净初级生产力N P P和所预测的产量进行了验证,通过N P P计算的冬小麦生物量与实际生物量间相对误差为-4.30%;预测冬小麦产量与实际小麦产量间相对误差平均为-4.41%,结果令人满意。展开更多
The Three-River Headwater Region(TRHR), known as the "Water Tower of China", is an important ecological shelter for national security interests and regional sustainable development activities for many downstream r...The Three-River Headwater Region(TRHR), known as the "Water Tower of China", is an important ecological shelter for national security interests and regional sustainable development activities for many downstream regions in China and a number of Southeast Asian countries. The TRHR is a high-elevation, cold environment with a unique, but typical alpine vegetation system. Net primary productivity(NPP) is a key vegetation parameter and ecological indicator that can reflect both natural environmental changes and carbon budget levels. Given the unique geographical environment and strategic location of the TRHR, many scholars have estimated NPP of the TRHR by using different methods; however, these estimates vary greatly for a number of reasons. To date, there is no paper that has reviewed and assessed NPP estimation studies conducted in the TRHR. Therefore, in this paper, we(1) summarized the related methods and results of NPP estimation in the TRHR in a systematic review of previous research;(2) discussed the suitability of existing methods for estimating NPP in the TRHR and highlighted the most significant challenges; and(3) assessed the estimated NPP results. Finally, developmental directions of NPP estimation in the TRHR were prospected.展开更多
Net primary production(NPP) is an indicator of rangeland ecosystem function. This research assessed the potential of the Carnegie Ames Stanford Approach(CASA) model for estimating NPP and its spatial and temporal chan...Net primary production(NPP) is an indicator of rangeland ecosystem function. This research assessed the potential of the Carnegie Ames Stanford Approach(CASA) model for estimating NPP and its spatial and temporal changes in semi-arid rangelands of Semirom County, Iran. Using CASA model, we estimated the NPP values based on monthly climate data and the normalized difference vegetation index(NDVI) obtained from the MODIS sensor. Regression analysis was then applied to compare the estimated production data with observed production data. The spatial and temporal changes in NPP and light utilization efficiency(LUE) were investigated in different rangeland vegetation types. The standardized precipitation index(SPI) was also calculated at different time scales and the correlation of SPI with NPP changes was determined. The results indicated that the estimated NPP values varied from 0.00 to 74.48 g C/(m^2·a). The observed and estimated NPP values had different correlations, depending on rangeland conditions and vegetation types. The highest and lowest correlations were respectively observed in Astragalus spp.-Agropyron spp. rangeland(R^2=0.75) with good condition and Gundelia spp.-Cousinia spp. rangeland(R^2=0.36) with poor and very poor conditions. The maximum and minimum LUE values were found in Astragalus spp.-Agropyron spp. rangeland(0.117 g C/MJ) with good condition and annual grassesannual forbs rangeland(0.010 g C/MJ), respectively. According to the correlations between SPI and NPP changes, the effects of drought periods on NPP depended on vegetation types and rangeland conditions. Annual plants had the highest drought sensitivity while shrubs exhibited the lowest drought sensitivity. The positive effects of wet periods on NPP were less evident in degraded areas where the destructive effects of drought were more prominent. Therefore, determining vegetation types and rangeland conditions is essential in NPP estimation. The findings of this study confirmed the potential of the CASA for estimating rangeland producti展开更多
Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the gras...Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the grassland NPP in southern China, we built a new climate productivity model, and validated the model with the measured data from different years in the past. The results showed that there was a logarithmic correlation between the grassland NPP and the mean annual temperature, and there was a linear positive correlation between the grassland NPP and the annual precipitation in southern China. Al these results reached a very signiifcant level (P〈0.01). There was a good correlation between the simulated and the measured NPP, withR2 of 0.8027, reaching the very signiifcant level. Meanwhile, both root mean square errors (RMSE) and relative root-mean-square errors (RRMSE) stayed at a relatively low level, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and from south to north, and the mean NPP was 471.62 g C m?2 from 2000 to 2011. Additionaly, there was a rising trend year by year for the mean annual NPP of southern grassland and the tilt rate of the mean annual NPP was 3.49 g C m?2 yr?1 in recent 12 years. The above results provided a new method for grassland NPP estimation in southern China.展开更多
净初级生产力(NPP)是衡量碳循环、指导土地利用、评估生态安全、指示环境变化、反映粮食安全等的重要参量,其估算受模型构建机理和生态系统关键地表参数输入的影响。近年来,随着遥感数据的不断丰富和遥感处理技术的快速发展,集成遥感数...净初级生产力(NPP)是衡量碳循环、指导土地利用、评估生态安全、指示环境变化、反映粮食安全等的重要参量,其估算受模型构建机理和生态系统关键地表参数输入的影响。近年来,随着遥感数据的不断丰富和遥感处理技术的快速发展,集成遥感数据的NPP估算模型相较于仅采用气候、土壤等传统观测数据的非遥感模型,在分析时空异质性等方面的优势日益凸显。本文基于Web of Science和CNKI两大数据库,采用文献统计分析方法,系统回顾NPP研究概况及国内外集成遥感数据的NPP估算模型的近期进展;并将集成遥感数据进行NPP估算的模型分为统计模型、光能利用率模型、过程模型及耦合模型四类;重点阐述了各类遥感估算模型的机理、差异性、适宜性及局限性;最后,在分析NPP遥感估算面临困境和科学挑战的基础上,从机理与影响因素、数据基础、参数反演、时空尺度拓展、软硬件支撑等方面对未来研究进行了展望。展开更多
文摘该文以中国冬小麦主要种植区黄淮海平原典型县市的冬小麦为研究对象,以植物净初级生产力模型对冬小麦估产进行研究。其中光合有效辐射数据(PAR)主要通过TOM S传感器紫外反射率月数据来计算获得。并且通过投影转换和内插方法,将分辨率由经度1.25度、纬度1度转为250 m。光合有效辐射分量(f PAR)主要通过250 m分辨率M OD IS的最大值合成法生成的N DV I月数据和f PAR之间的统计直线关系(f PAR=a N DV I+b)来反演。在研究中光能转化有机质效率(ε)被视为常数,其值通过前人研究结果确定。然后计算冬小麦净初级生产力(N P P=ε×f PAR×PAR)。文中主要考虑冬小麦产量形成关键期内N P P的形成,然后将累积的N P P转化为作物干物质的量,最后通过冬小麦收获指数修正,得到估计的冬小麦产量。而且利用地面实际调查产量数据对所预测的植物净初级生产力N P P和所预测的产量进行了验证,通过N P P计算的冬小麦生物量与实际生物量间相对误差为-4.30%;预测冬小麦产量与实际小麦产量间相对误差平均为-4.41%,结果令人满意。
基金National Key Research and Development Program of China,No.2016YFC0500205National Basic Research Program of China(973 Program),No.2015CB954103,No.2015CB954101
文摘The Three-River Headwater Region(TRHR), known as the "Water Tower of China", is an important ecological shelter for national security interests and regional sustainable development activities for many downstream regions in China and a number of Southeast Asian countries. The TRHR is a high-elevation, cold environment with a unique, but typical alpine vegetation system. Net primary productivity(NPP) is a key vegetation parameter and ecological indicator that can reflect both natural environmental changes and carbon budget levels. Given the unique geographical environment and strategic location of the TRHR, many scholars have estimated NPP of the TRHR by using different methods; however, these estimates vary greatly for a number of reasons. To date, there is no paper that has reviewed and assessed NPP estimation studies conducted in the TRHR. Therefore, in this paper, we(1) summarized the related methods and results of NPP estimation in the TRHR in a systematic review of previous research;(2) discussed the suitability of existing methods for estimating NPP in the TRHR and highlighted the most significant challenges; and(3) assessed the estimated NPP results. Finally, developmental directions of NPP estimation in the TRHR were prospected.
文摘Net primary production(NPP) is an indicator of rangeland ecosystem function. This research assessed the potential of the Carnegie Ames Stanford Approach(CASA) model for estimating NPP and its spatial and temporal changes in semi-arid rangelands of Semirom County, Iran. Using CASA model, we estimated the NPP values based on monthly climate data and the normalized difference vegetation index(NDVI) obtained from the MODIS sensor. Regression analysis was then applied to compare the estimated production data with observed production data. The spatial and temporal changes in NPP and light utilization efficiency(LUE) were investigated in different rangeland vegetation types. The standardized precipitation index(SPI) was also calculated at different time scales and the correlation of SPI with NPP changes was determined. The results indicated that the estimated NPP values varied from 0.00 to 74.48 g C/(m^2·a). The observed and estimated NPP values had different correlations, depending on rangeland conditions and vegetation types. The highest and lowest correlations were respectively observed in Astragalus spp.-Agropyron spp. rangeland(R^2=0.75) with good condition and Gundelia spp.-Cousinia spp. rangeland(R^2=0.36) with poor and very poor conditions. The maximum and minimum LUE values were found in Astragalus spp.-Agropyron spp. rangeland(0.117 g C/MJ) with good condition and annual grassesannual forbs rangeland(0.010 g C/MJ), respectively. According to the correlations between SPI and NPP changes, the effects of drought periods on NPP depended on vegetation types and rangeland conditions. Annual plants had the highest drought sensitivity while shrubs exhibited the lowest drought sensitivity. The positive effects of wet periods on NPP were less evident in degraded areas where the destructive effects of drought were more prominent. Therefore, determining vegetation types and rangeland conditions is essential in NPP estimation. The findings of this study confirmed the potential of the CASA for estimating rangeland producti
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD)the Science and Technology Innovation Project Fund of Chinese Academy of Agricultural Sciences (2015)
文摘Grassland is the important component of the terrestrial ecosystems. Estimating net primary productivity (NPP) of grassland ecosystem has been a central focus in global climate change researches. To simulate the grassland NPP in southern China, we built a new climate productivity model, and validated the model with the measured data from different years in the past. The results showed that there was a logarithmic correlation between the grassland NPP and the mean annual temperature, and there was a linear positive correlation between the grassland NPP and the annual precipitation in southern China. Al these results reached a very signiifcant level (P〈0.01). There was a good correlation between the simulated and the measured NPP, withR2 of 0.8027, reaching the very signiifcant level. Meanwhile, both root mean square errors (RMSE) and relative root-mean-square errors (RRMSE) stayed at a relatively low level, showing that the simulation results of the model were reliable. The NPP values in the study area had a decreasing trend from east to west and from south to north, and the mean NPP was 471.62 g C m?2 from 2000 to 2011. Additionaly, there was a rising trend year by year for the mean annual NPP of southern grassland and the tilt rate of the mean annual NPP was 3.49 g C m?2 yr?1 in recent 12 years. The above results provided a new method for grassland NPP estimation in southern China.
文摘净初级生产力(NPP)是衡量碳循环、指导土地利用、评估生态安全、指示环境变化、反映粮食安全等的重要参量,其估算受模型构建机理和生态系统关键地表参数输入的影响。近年来,随着遥感数据的不断丰富和遥感处理技术的快速发展,集成遥感数据的NPP估算模型相较于仅采用气候、土壤等传统观测数据的非遥感模型,在分析时空异质性等方面的优势日益凸显。本文基于Web of Science和CNKI两大数据库,采用文献统计分析方法,系统回顾NPP研究概况及国内外集成遥感数据的NPP估算模型的近期进展;并将集成遥感数据进行NPP估算的模型分为统计模型、光能利用率模型、过程模型及耦合模型四类;重点阐述了各类遥感估算模型的机理、差异性、适宜性及局限性;最后,在分析NPP遥感估算面临困境和科学挑战的基础上,从机理与影响因素、数据基础、参数反演、时空尺度拓展、软硬件支撑等方面对未来研究进行了展望。