Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduct...Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.展开更多
The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the ...The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.展开更多
为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h...为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h情况下,NO_(x)转化率随排气温度升高呈现先增后减的趋势,不同温度下NO_(x)转化率最大差值为43.4百分点;NH_(3)泄漏量随着温度的升高大体上呈下降趋势,不同温度下NH_(3)泄漏量最大差值为328×10^(-6);NO_(x)转化率随排气流量升高呈现先增后减的趋势,在250℃时,不同排气流量下NO_(x)转化效率最大相差21.5百分点;NH_(3)泄漏量随排气流量的增大而增加,在250℃时,不同排气流量下NH_(3)泄漏量最大差值为90.8×10^(-6)。相同工况下,海拔越高,NO_(x)转化率越高,NH_(3)泄漏量越小,大气压力为80和100 k Pa下NO_(x)转化率最大相差20.1百分点,NH_(3)泄漏量最大相差54.6×10^(-6)。展开更多
文摘Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.
基金supported by National Key Research and Development Project of China(No.2019YFC1805503)National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2019A13)+1 种基金the Open Project Program of the State Key Laboratory of Petroleum Pollution Control(No.PPC2019013)Major Science and Technology Projects of Shanxi Province(No.20181102017)。
文摘The presented work reports the selective catalytic reduction(SCR)of NO_(x) assisted by dielectric barrier discharge plasma via simulating marine diesel engine exhaust,and the experimental results demonstrate that the low-temperature activity of NH_(3)-SCR assisted by non-thermal plasma is enhanced significantly,particularly in the presence of a C_(3)H_(6) additive.Simultaneously,CeMnZrO_(x)@TiO_(2) exhibits strong tolerance to SO_(2) poisoning and superior catalytic stability.It is worthwhile to explore a new approach to remove NO_(x) from marine diesel engine exhaust,which is of vital significance for both academic research and practical applications.
文摘为研究不同海拔下SCR系统性能,分别在80、90、100 k Pa大气压力下对一台满足国五排放标准的高压共轨柴油机进行性能与排放试验,以研究排气温度、排气流量和海拔变化对NO_(x)转化率和NH_(3)泄漏量的影响。结果表明:在排气流量为350 kg/h情况下,NO_(x)转化率随排气温度升高呈现先增后减的趋势,不同温度下NO_(x)转化率最大差值为43.4百分点;NH_(3)泄漏量随着温度的升高大体上呈下降趋势,不同温度下NH_(3)泄漏量最大差值为328×10^(-6);NO_(x)转化率随排气流量升高呈现先增后减的趋势,在250℃时,不同排气流量下NO_(x)转化效率最大相差21.5百分点;NH_(3)泄漏量随排气流量的增大而增加,在250℃时,不同排气流量下NH_(3)泄漏量最大差值为90.8×10^(-6)。相同工况下,海拔越高,NO_(x)转化率越高,NH_(3)泄漏量越小,大气压力为80和100 k Pa下NO_(x)转化率最大相差20.1百分点,NH_(3)泄漏量最大相差54.6×10^(-6)。